Skip to main content
Log in

Comparative Transcriptomic Analysis of Flagellar-Associated Genes in Salmonella Typhimurium and Its rnc Mutant

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a globally recognized foodborne pathogen that affects both animals and humans. Endoribonucleases mediate RNA processing and degradation in the adaptation of bacteria to environmental changes and have been linked to the pathogenicity of S. Typhimurium. Not much is known about the specific regulatory mechanisms of these enzymes in S. Typhimurium, particularly in the context of environmental adaptation. Thus, this study carried out a comparative transcriptomic analysis of wild-type S. Typhimurium SL1344 and its mutant (∆rnc), which lacks the rnc gene encoding RNase III, thereby elucidating the detailed regulatory characteristics that can be attributed to the rnc gene. Global gene expression analysis revealed that the ∆rnc strain exhibited 410 upregulated and 301 downregulated genes (fold-change > 1.5 and p < 0.05), as compared to the wild-type strain. Subsequent bioinformatics analysis indicated that these differentially expressed genes are involved in various physiological functions, in both the wild-type and ∆rnc strains. This study provides evidence for the critical role of RNase III as a general positive regulator of flagellar-associated genes and its involvement in the pathogenicity of S. Typhimurium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The raw RNA-seq data generated in this study have been deposited in the National Center for Biotechnology Information Sequence Read Archive, under the BioProject accession number PRJNA967189 (http://www.ncbi.nlm.nih.gov/sra/PRJNA967189).

References

  • Aldridge, P., & Hughes, K. T. (2002). Regulation of flagellar assembly. Current Opinion in Microbiology, 5, 160–165.

    CAS  PubMed  Google Scholar 

  • Bardwell, J. C., Regnier, P., Chen, S. M., Nakamura, Y., Grunberg-Manago, M., & Court, D. L. (1989). Autoregulation of RNase III operon by mRNA processing. The EMBO Journal, 8, 3401–3407.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bechhofer, D. H., & Deutscher, M. P. (2019). Bacterial ribonucleases and their roles in RNA metabolism. Critical Reviews in Biochemistry and Molecular Biology, 54, 242–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boisset, S., Geissmann, T., Huntzinger, E., Fechter, P., Bendridi, N., Possedko, M., Chevalier, C., Helfer, A. C., Benito, Y., Jacquier, A., & Gaspin, C. (2007). Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. Genes & Development, 21, 1353–1366.

    CAS  Google Scholar 

  • Brenner, F. W., Villar, R. G., Angulo, F. J., Tauxe, R., & Swaminathan, B. (2000). Salmonella nomenclature. Journal of Clinical Microbiology, 38, 2465–2467.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buckle, G. C., Walker, C. L., & Black, R. E. (2012). Typhoid fever and paratyphoid fever: Systematic review to estimate global morbidity and mortality for 2010. Journal of Global Health, 2, 010401.

    PubMed  PubMed Central  Google Scholar 

  • Chaban, B., Hughes, H. V., & Beeby, M. (2015). The flagellum in bacterial pathogens: For motility and a whole lot more. Seminars in Cell & Developmental Biology, 46, 91–103.

    CAS  Google Scholar 

  • Chang, A. C., & Cohen, S. N. (1978). Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. Journal of Bacteriology, 134, 1141–1156.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chevance, F. F., & Hughes, K. T. (2008). Coordinating assembly of a bacterial macromolecular machine. Nature Reviews Microbiology, 6, 455–465.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chilcott, G. S., & Hughes, K. T. (2000). Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar Typhimurium and Escherichia coli. Microbiology and Molecular Biology Reviews, 64, 694–708.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deutscher, M. P. (2021). Regulation of bacterial ribonucleases. Annual Review of Microbiology, 5, 71–86.

    Google Scholar 

  • Duan, Q., Zhou, M., Zhu, L., & Zhu, G. (2013). Flagella and bacterial pathogenicity. Journal of Basic Microbiology, 53, 1–8.

    PubMed  Google Scholar 

  • Echazarreta, M. A., & Klose, K. E. (2019). Vibrio flagellar synthesis. Frontiers in Cellular and Infection Microbiology, 9, 131.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galán, J. E. (2021). Salmonella Typhimurium and inflammation: A pathogen-centric affair. Nature Reviews Microbiology, 19, 716–725.

    PubMed  PubMed Central  Google Scholar 

  • Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., & Hornik, K. (2004). Bioconductor: Open software development for computational biology and bioinformatics. Genome Biology, 5, R80.

    PubMed  PubMed Central  Google Scholar 

  • Gordon, G. C., Cameron, J. C., & Pfleger, B. F. (2017). RNA sequencing identifies new RNase III cleavage sites in Escherichia coli and reveals increased regulation of mRNA. mBio, 8, e00128-17.

    PubMed  PubMed Central  Google Scholar 

  • Haiko, J., & Westerlund-Wikstrom, B. (2013). The role of the bacterial flagellum in adhesion and virulence. Biology, 2, 1242–1267.

    PubMed  PubMed Central  Google Scholar 

  • Has, E. G., Akcelik, N., & Akcelik, M. (2023). Comparative global gene expression analysis of biofilm forms of Salmonella Typhimurium ATCC 14028 and its seqA mutant. Gene, 853, 147094.

    CAS  PubMed  Google Scholar 

  • Hoiseth, S. K., & Stocker, B. A. (1981). Aromatic-dependent Salmonella Typhimurium are non-virulent and effective as live vaccines. Nature, 291, 238–239.

    CAS  PubMed  ADS  Google Scholar 

  • Horstmann, J. A., Lunelli, M., Cazzola, H., Heidemann, J., Kuhne, C., Steffen, P., Szefs, S., Rossi, C., Lokareddy, R. K., Wang, C., & Lemaire, L. (2020). Methylation of Salmonella Typhimurium flagella promotes bacterial adhesion and host cell invasion. Nature Communications, 11, 2013.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Huntzinger, E., Boisset, S., Saveanu, C., Benito, Y., Geissmann, T., Namane, A., Lina, G., Etienne, J., Ehresmann, B., Ehresmann, C., & Jacquier, A. (2005). Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulate spa gene expression. The EMBO Journal, 24, 824–835.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ide, N., Ikebe, T., & Kutsukake, K. (1999). Reevaluation of the promoter structure of the class 3 flagellar operons of Escherichia coli and Salmonella. Genes & Genetic Systems, 74, 113–116.

    CAS  Google Scholar 

  • Josenhans, C., & Suerbaum, S. (2002). The role of motility as a virulence factor in bacteria. International Journal of Medical Microbiology, 291, 605–614.

    CAS  PubMed  Google Scholar 

  • Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28, 27–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karlinsey, J. E., Tanaka, S., Bettenworth, V., Yamaguchi, S., Boos, W., Aizawa, S. I., & Hughes, K. T. (2000). Completion of the hook-basal body complex of the Salmonella Typhimurium flagellum is coupled to FlgM secretion and fliC transcription. Molecular Microbiology, 37, 1220–1231.

    CAS  PubMed  Google Scholar 

  • Kim, D., Kwon, S., Rhee, J. W., Kim, K. D., Kim, Y. E., Park, C. S., Choi, M. J., Suh, J. G., Kim, D. S., Lee, Y., & Kwon, H. J. (2011). Production of antibodies with peptide-CpG-DNA-liposome complex without carriers. BMC Immunology, 12, 29.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, D., Lee, Y., & Kwon, H. J. (2015). Production of epitope-specific antibodies by immunization with synthetic epitope peptide formulated with CpG-DNA-liposome complex without carriers. In G. Houen (Ed.), Peptide antibodies. Methods in molecular biology. (Vol. 1348). New York: Humana Press.

    Google Scholar 

  • Kim, K. S., Manasherob, R., & Cohen, S. N. (2008). YmdB: A stress-responsive ribonuclease-binding regulator of E. coli RNase III activity. Genes & Development, 22, 3497–3508.

    CAS  Google Scholar 

  • Kutsukake, K., Ohya, Y., & Iino, T. (1990). Transcriptional analysis of the flagellar regulon of Salmonella Typhimurium. Journal of Bacteriology, 172, 741–747.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J., Lee, M., & Lee, K. (2021a). Trans-acting regulators of ribonuclease activity. Journal of Microbiology, 59, 341–359.

    CAS  PubMed  Google Scholar 

  • Lee, J., Shin, E., Park, J., Lee, M., & Lee, K. (2021b). Regulator of ribonuclease activity modulates the pathogenicity of Vibrio vulnificus. Journal of Microbiology, 59, 1133–1141.

    CAS  PubMed  Google Scholar 

  • Lee, J., Shin, E., Yeom, J. H., Park, J., Kim, S., Lee, M., & Lee, K. (2022). Regulator of RNase E activity modulates the pathogenicity of Salmonella Typhimurium. Microbial Pathogenesis, 165, 105460.

    CAS  PubMed  Google Scholar 

  • Lee, M., Joo, M., Sim, M., Sim, S. H., Kim, H. L., Lee, J., Ryu, M., Yeom, J. H., Hahn, Y., Ha, N. C., & Cho, J. C. (2019). The coordinated action of RNase III and RNase G controls enolase expression in response to oxygen availability in Escherichia coli. Scientific Reports, 9, 17257.

    PubMed  PubMed Central  ADS  Google Scholar 

  • Lee, M., Ryu, M., Joo, M., Seo, Y. J., Lee, J., Kim, H. M., Shin, E., Yeom, J. H., Kim, Y. H., Bae, J., & Lee, K. (2021c). Endoribonuclease-mediated control of hns mRNA stability constitutes a key regulatory pathway for Salmonella Typhimurium pathogenicity island 1 expression. PLoS Pathogens, 17, e1009263.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim, B., & Lee, K. (2015). Stability of the osmoregulated promoter-derived proP mRNA is posttranscriptionally regulated by RNase III in Escherichia coli. Journal of Bacteriology, 197, 1297–1305.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim, B., Sim, M., Lee, H., Hyun, S., Lee, Y., Hahn, Y., Shin, E., & Lee, K. (2015). Regulation of Escherichia coli RNase III activity. Journal of Microbiology, 53, 487–494.

    CAS  PubMed  Google Scholar 

  • Lim, B., Sim, S. H., Sim, M., Kim, K., Jeon, C. O., Lee, Y., Ha, N. C., & Lee, K. (2012). RNase III controls the degradation of corA mRNA in Escherichia coli. Journal of Bacteriology, 194, 2214–2220.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Majowicz, S. E., Musto, J., Scallan, E., Angulo, F. J., Kirk, M., O’Brien, S. J., Jones, T. F., Fazil, A., Hoekstra, R. M., for the International Collaboration on Enteric Disease ’Burden of Illness Studies. (2010). The global burden of nontyphoidal Salmonella gastroenteritis. Clinical Infectious Diseases, 50, 882–889.

    PubMed  Google Scholar 

  • Matsunaga, J., Simons, E. L., & Simons, R. W. (1996). RNase III autoregulation: Structure and function of rncO, the posttranscriptional “operator.” RNA, 2, 1228–1240.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miao, E. A., Leaf, I. A., Treuting, P. M., Mao, D. P., Dors, M., Sarkar, A., Warren, S. E., Wewers, M. D., & Aderem, A. (2010). Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nature Immunology, 11, 1136–1142.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minamino, T., Morimoto, Y. V., Kinoshita, M., & Namba, K. (2021). Multiple roles of flagellar export chaperones for efficient and robust flagellar filament formation in Salmonella. Frontiers in Microbiology, 12, 756044.

    PubMed  PubMed Central  Google Scholar 

  • Moffatt, C. R. M., Musto, J., Pingault, N., Miller, M., Stafford, R., Gregory, J., Polkinghorne, B. G., & Kirk, M. D. (2016). Salmonella Typhimurium and outbreaks of egg-associated disease in Australia, 2001 to 2011. Foodborne Pathogens and Disease, 13, 379–385.

    CAS  PubMed  Google Scholar 

  • Mohanty, B. K., & Kushner, S. R. (2018). Enzymes involved in posttranscriptional RNA metabolism in gram-negative bacteria. Microbiol Spectrum. https://doi.org/10.1128/microbiolspec.rwr-0011-2017

    Article  Google Scholar 

  • Morimoto, Y. V., & Minamino, T. (2021). Architecture and assembly of the bacterial flagellar motor complex. In J. R. Harris & J. Marles-Wright (Eds.), Macromolecular protein complexes III: Structure and function. Subcellular biochemistry. (Vol. 96). Springer.

    Google Scholar 

  • Na, D. (2020). User guides for biologists to learn computational methods. Journal of Microbiology, 58, 173–175.

    PubMed  Google Scholar 

  • Okada, Y., Wachi, M., Hirata, A., Suzuki, K., Nagai, K., & Matsuhashi, M. (1994). Cytoplasmic axial filaments in Escherichia coli cells: Possible function in the mechanism of chromosome segregation and cell division. Journal of Bacteriology, 176, 917–922.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pati, N. B., Vishwakarma, V., Jaiswal, S., Periaswamy, B., Hardt, W. D., & Suar, M. (2013). Deletion of invH gene in Salmonella enterica serovar Typhimurium limits the secretion of Sip effector proteins. Microbes and Infection, 15, 66–73.

    CAS  PubMed  Google Scholar 

  • Popoff, M. Y., Bockemühl, J., & Brenner, F. W. (2000). Supplement 1998 (no. 42) to the Kauffmann-White scheme. Research in Microbiology, 151, 63–65.

    CAS  PubMed  Google Scholar 

  • Raffatellu, M., Wilson, R. P., Chessa, D., Andrews-Polymenis, H., Tran, Q. T., Lawhon, S., Khare, S., Adams, L. G., & Baumler, A. J. (2005). SipA, SopA, SopB, SopD, and SopE2 contribute to Salmonella enterica serotype Typhimurium invasion of epithelial cells. Infection and Immunity, 73, 146–154.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rahmsdorf, H. J., Pai, S. H., Ponta, H., Herrlich, P., Roskoski, R., Jr., Schweiger, M., & Studier, F. W. (1974). Protein kinase induction in Escherichia coli by bacteriophage T7. Proceedings of the National Academy of Sciences of the United States of America, 71, 586–589.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Sim, M., Lim, B., Sim, S. H., Kim, D., Jung, E., Lee, Y., & Lee, K. (2014). Two tandem RNase III cleavage sites determine betT mRNA stability in response to osmotic stress in Escherichia coli. PLoS ONE, 9, e100520.

    PubMed  PubMed Central  ADS  Google Scholar 

  • Sim, S. H., Yeom, J. H., Shin, C., Song, W. S., Shin, E., Kim, H. M., Cha, C. J., Han, S. H., Ha, N. C., Kim, S. W., & Hahn, Y. (2010). Escherichia coli ribonuclease III activity is downregulated by osmotic stress: Consequences for the degradation of bdm mRNA in biofilm formation. Molecular Microbiology, 75, 413–425.

    CAS  PubMed  Google Scholar 

  • Smith, S. I., Seriki, A., & Ajayi, A. (2016). Typhoidal and non-typhoidal Salmonella infections in Africa. European Journal of Clinical Microbiology & Infectious Diseases, 35, 1913–1922.

    CAS  Google Scholar 

  • Song, W., Joo, M., Yeom, J. H., Shin, E., Lee, M., Choi, H. K., Hwang, J., Kim, Y. I., Seo, R., Lee, J. E., & Moore, C. J. (2019). Divergent rRNAs as regulators of gene expression at the ribosome level. Nature Microbiology, 4, 515–526.

    CAS  PubMed  Google Scholar 

  • Song, W., Kim, Y. H., Sim, S. H., Hwang, S., Lee, J. H., Lee, Y., Bae, J., Hwang, J., & Lee, K. (2014). Antibiotic stress-induced modulation of the endoribonucleolytic activity of RNase III and RNase G confers resistance to aminoglycoside antibiotics in Escherichia coli. Nucleic Acids Research, 42, 4669–4681.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stecher, B., Hapfelmeier, S., Müller, C., Kremer, M., Stallmach, T., & Hardt, W. D. (2004). Flagella and chemotaxis are required for efficient induction of Salmonella enterica serovar Typhimurium colitis in streptomycin-pretreated mice. Infection and Immunity, 72, 4138–4150.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stecher, B., Robbiani, R., Walker, A. W., Westendorf, A. M., Barthel, M., Kremer, M., Chaffron, S., Macpherson, A. J., Buer, J., Parkhill, J., & Dougan, G. (2007). Salmonella enterica serovar Typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biology, 5, 2177–2189.

    CAS  PubMed  Google Scholar 

  • Stewart, M. K., Cummings, L. A., Johnson, M. L., Berezow, A. B., & Cookson, B. T. (2011). Regulation of phenotypic heterogeneity permits Salmonella evasion of the host caspase-1 inflammatory response. Proceedings of the National Academy of Sciences of the United States of America, 108, 20742–20747.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Svensson, S. L., & Sharma, C. M. (2021). RNase III-mediated processing of a trans-acting bacterial sRNA and its cis-encoded antagonist. eLife, 10, e69064.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., & Jensen, L. J. (2019). STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47, D607–D613.

    CAS  PubMed  Google Scholar 

  • The UniProt Consortium. (2018). UniProt: The universal protein knowledgebase. Nucleic Acids Research, 46, 2699.

    PubMed  Google Scholar 

  • Thomason, M. K., Bischler, T., Eisenbart, S. K., Förstner, K. U., Zhang, A., Herbig, A., Nieselt, K., Sharma, C. M., & Storz, G. (2015). Global transcriptional start site mapping using differential RNA sequencing reveals novel antisense RNAs in Escherichia coli. Journal of Bacteriology, 197, 18–28.

    PubMed  Google Scholar 

  • Tomoyasu, T., Takaya, A., Isogai, E., & Yamamoto, T. (2003). Turnover of FlhD and FlhC, master regulator proteins for Salmonella flagellum biogenesis, by the ATP-dependent ClpXP protease. Molecular Microbiology, 48, 443–452.

    CAS  PubMed  Google Scholar 

  • Viegas, S. C., Mil-Homens, D., Fialho, A. M., & Arraiano, C. M. (2013). The virulence of Salmonella enterica Serovar Typhimurium in the insect model Galleria mellonella is impaired by mutations in RNase E and RNase III. Applied and Environmental Microbiology, 79, 6124–6133.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Wang, S., Fleming, R. T., Westbrook, E. M., Matsumura, P., & McKay, D. B. (2006). Structure of the Escherichia coli FlhDC complex, a prokaryotic heteromeric regulator of transcription. Journal of Molecular Biology, 355, 798–808.

    CAS  PubMed  Google Scholar 

  • Wang, W., Yue, Y., Zhang, M., Song, N., Jia, H., Dai, Y., Zhang, F., Li, C., & Li, B. (2022). Host acid signal controls Salmonella flagella biogenesis through CadC-YdiV axis. Gut Microbes, 14, 2146979.

    PubMed  PubMed Central  Google Scholar 

  • Yanagihara, S., Iyoda, S., Ohnishi, K., Iino, T., & Kutsukake, K. (1999). Structure and transcriptional control of the flagellar master operon of Salmonella Typhimurium. Genes & Genetic Systems, 74, 105–111.

    CAS  Google Scholar 

  • Yokoyama, W. M., Christensen, M., Santos, G. D., & Miller, D. (2006). Production of monoclonal antibodies. Current Protocols in Immunology, 2, 251–252.

    Google Scholar 

  • Yue, Y., Wang, W., Ma, Y., Song, N., Jia, H., Li, C., Wang, Q., Li, H., & Li, B. (2023). Cooperative regulation of flagellar synthesis by two EAL-like proteins upon Salmonella entry into host cells. Microbiol Spectrum, 11, e02859–22.

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Jinsoo Kim for his technical assistance. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT; MSIT) (Grant No. 2022R1F1A1070791 and RS-2023-00210754).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minho Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures involving animal studies were approved by the Institutional Animal Care and Use Committee of Hallym University (Hallym 2022-47).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 983 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S., Byun, JW. & Lee, M. Comparative Transcriptomic Analysis of Flagellar-Associated Genes in Salmonella Typhimurium and Its rnc Mutant. J Microbiol. 62, 33–48 (2024). https://doi.org/10.1007/s12275-023-00099-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-023-00099-5

Keywords

Navigation