Skip to main content
Log in

LAMMER Kinase Governs the Expression and Cellular Localization of Gas2, a Key Regulator of Flocculation in Schizosaccharomyces pombe

  • Molecular Microbiology and Genomics
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

It was reported that LAMMER kinase in Schizosaccharomyces pombe plays an important role in cation-dependent and galactose-specific flocculation. Analogous to other flocculating yeasts, when cell wall extracts of the Δlkh1 strain were treated to the wild-type strain, it displayed flocculation. Gas2, a 1,3-β-glucanosyl transferase, was isolated from the EDTA-extracted cell-surface proteins in the Δlkh1 strain. While disruption of the gas2+ gene was not lethal and reduced the flocculation activity of the ∆lkh1 strain, the expression of a secreted form of Gas2, in which the GPI anchor addition sequences had been removed, conferred the ability to flocculate upon the WT strain. The Gas2-mediated flocculation was strongly inhibited by galactose but not by glucose. Immunostaining analysis showed that the cell surface localization of Gas2 was crucial for the flocculation of fission yeast. In addition, we identified the regulation of mbx2+ expression by Lkh1 using RT-qPCR. Taken together, we found that Lkh1 induces asexual flocculation by regulating not only the localization of Gas2 but also the transcription of gas2+ through Mbx2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Publicly available datasets were analyzed in this study. The original contributions presented in the study are included in the article/Supplementary Material.

References

  • Al-Mahmood, S., Colin, S., & Bonaly, R. (1991). Kluyveromyces bulgaricus yeast lectins: Isolation of two galactose-specific lectin forms from the yeast cell wall. Journal of Biological Chemistry, 266, 20882–20887.

    CAS  PubMed  Google Scholar 

  • Bony, M., Thines-Sempoux, D., Barre, P., & Blondin, B. (1997). Localization and cell surface anchoring of the Saccharomyces cerevisiae flocculation protein Flo1p. Journal of Bacteriology, 179, 4929–4936.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borges, A. R., Link, F., Engstler, M., & Jones, N. G. (2021). The glycosylphosphatidylinositol anchor: A linchpin for cell surface versatility of trypanosomatids. Frontiers in Cell and Developmental Biology, 9, 720536.

    PubMed  PubMed Central  Google Scholar 

  • Bourgoint, C., Rispal, D., Berti, M., Filipuzzi, I., Helliwell, S. B., Prouteau, M., & Loewith, R. (2018). Target of rapamycin complex 2– dependent phosphorylation of the coat protein Pan1 by Akl1 controls endocytosis dynamics in Saccharomyces cerevisiae. Journal of Biological Chemistry, 293, 12043–12053.

    CAS  PubMed  PubMed Central  Google Scholar 

  • D’Souza, S. A., Rajendran, L., Bagg, R., Barbier, L., van Pel, D. M., Moshiri, H., & Roy, P. J. (2016). The MADD-3 LAMMER kinase interacts with a p38 MAP kinase pathway to regulate the display of the EVA-1 guidance receptor in Caenorhabditis elegans. PLoS Genetics, 12, e1006010.

    PubMed  PubMed Central  Google Scholar 

  • de Medina-Redondo, M., Arnáiz-Pita, Y., Clavaud, C., Fontaine, T., del Rey, F., Latgé, J. P., & de Aldana, C. R. V. (2010). β(1,3)-glucanosyl-transferase activity is essential for cell wall integrity and viability of Schizosaccharomyces pombe. PLoS ONE, 5, e14046.

    PubMed  PubMed Central  ADS  Google Scholar 

  • Forsburg, S. L., & Rhind, N. (2006). Basic methods for fission yeast. Yeast, 23, 173–183.

    CAS  PubMed  Google Scholar 

  • Fraering, P., Imhof, I., Meyer, U., Strub, J. M., van Dorsselaer, A., Vionnet, C., & Conzelmann, A. (2001). The GPI transamidase complex of Saccharomyces cerevisiae contains Gaa1p, Gpi8p, and Gpi16p. Molecular Biology of the Cell, 12, 3295–3306.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frieman, M. B., & Cormack, B. P. (2003). The ω-site sequence of glycosylphosphatidylinositol-anchored proteins in Saccharomyces cerevisiae can determine distribution between the membrane and the cell wall. Molecular Microbiology, 50, 883–896.

    CAS  PubMed  Google Scholar 

  • Géhin, G., Coulon, J., Coleman, A., & Bonaly, R. (2001). Isolation and biochemical characterization of cell wall tight protein complex involved in self-flocculation of Kluyveromyces bulgaricus. Antonie Van Leeuwenhoek, 80, 225–236.

    PubMed  Google Scholar 

  • Goossens, K. V. Y., Stassen, C., Stals, I., Donohue, D. S., Devreese, B., de Greve, H., & Willaert, R. G. (2011). The N-terminal domain of the Flo1 flocculation protein from Saccharomyces cerevisiae binds specifically to mannose carbohydrates. Eukaryotic Cell, 10, 110–117.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Groes, M., Teilum, K., Olesen, K., Poulsen, F. M., & Henriksen, A. (2002). Purification, crystallization and preliminary X-ray diffraction analysis of the carbohydrate-binding domain of flocculin, a cell-adhesion molecule from Saccharomyces carlsbergensis. Acta Crystallographica Section D, Biological Crystallography, 58, 2135–2137.

    PubMed  ADS  Google Scholar 

  • Halme, A., Bumgarner, S., Styles, C., & Fink, G. R. (2004). Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell, 116, 405–415.

    CAS  PubMed  Google Scholar 

  • Huang, K. M., & Snidert, M. D. (1995). Isolation of protein glycosylation mutants in the fission yeast Schizosaccharomyces pombe. Molecular Biology of the Cell, 6, 485–496.

    CAS  PubMed  PubMed Central  Google Scholar 

  • James, B. P., Staatz, W. D., Wilkinson, S. T., Meuillet, E., & Powis, G. (2009). Superoxide dismutase is regulated by LAMMER kinase in Drosophila and human cells. Free Radical Biology and Medicine, 46, 821–827.

    CAS  PubMed  Google Scholar 

  • Kang, W. H., Park, Y. H., & Park, H. M. (2010). The LAMMER kinase homolog, Lkh1, regulates Tup transcriptional repressors through phosphorylation in Schizosaccharomyces pombe. Journal of Biological Chemistry, 285, 13797–13806.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kapteyn, J. C., Montijn, R. C., Vink, E., de la Cruz, J., Llobell, A., Douwes, J. E., Shimoi, H., Lipke, P. N., & Klis, F. M. (1996). Retention of Saccharomyces cerevisiae cell wall proteins through a phosphodiester-linked β-1,3-/β-l,6-glucan heteropolymer. Glycobiology, 6, 337–345.

    CAS  PubMed  Google Scholar 

  • Kapteyn, J. C., Van Den Ende, H., & Klis, F. M. (1999). The contribution of cell wall proteins to the organization of the yeast cell wall. Biochimica Et Biophysica Acta, 1426, 373–383.

    CAS  PubMed  Google Scholar 

  • Kim, K. H., Cho, Y. M., Kang, W. H., Kim, J. H., Byun, K. H., Park, Y. D., Bae, K. S., & Park, H. M. (2001). Negative regulation of filamentous growth and flocculation by Lkh1, a fission yeast LAMMER kinase homolog. Biochemical and Biophysical Research Communications, 289, 1237–1242.

    CAS  PubMed  Google Scholar 

  • Kinoshita, T. (2020). Biosynthesis and biology of mammalian GPI-anchored proteins. Open Biology, 10, 190290.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi, O., Hayashi, N., Kuroki, R., & Sone, H. (1998). Region of Flo1 proteins responsible for sugar recognition. Journal of Bacteriology, 180, 6503–6510.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon, E. J. G., Laderoute, A., Chatfield-Reed, K., Vachon, L., Karagiannis, J., & Chua, G. (2012). Deciphering the transcriptional-regulatory network of flocculation in Schizosaccharomyces pombe. PLoS Genetics, 8, e1003104.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J., Moir, R. D., McIntosh, K. B., & Willis, I. M. (2012). TOR signaling regulates ribosome and tRNA synthesis via LAMMER/Clk and GSK-3 family kinases. Molecular Cell, 45, 836–843.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, L., Zhu, X. M., Wu, J. Q., Cao, N., Bao, J. D., Liu, X. H., & Lin, F. C. (2022). The LAMMER kinase MoKns1 regulates growth, conidiation and pathogenicity in Magnaporthe oryzae. International Journal of Molecular Sciences, 23, 8104.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim, J. Y., Kim, Y. J., Woo, S. A., Jeong, J. W., Lee, Y. R., Kim, C. H., & Park, H. M. (2021). The LAMMER kinase, LkhA, affects Aspergillus fumigatus pathogenicity by modulating reproduction and biosynthesis of cell wall PAMPs. Frontiers in Cellular and Infection Microbiology, 11, 756206.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim, J. Y., & Park, H. M. (2019). The dual-specificity LAMMER kinase affects stress-response and morphological plasticity in fungi. Frontiers in Cellular and Infection Microbiology, 9, 213.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lipatova, Z., & Segev, N. (2019). Ypt/Rab GTPases and their TRAPP GEFs at the Golgi. FEBS Letters, 593, 2488–2500.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y. S., Wang, Y., Zhou, X., Zhang, L., Yang, G., Gao, X. D., Murakami, Y., Fujita, M., & Kinoshita, T. (2023). Accumulated precursors of specific GPI-anchored proteins upregulate GPI biosynthesis with ARV1. Journal of Cell Biology, 222, e202208159.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, K., Wakisaka, M., Sakai, K., & Shirai, Y. (2010). Flocculation phenomenon of a mutant flocculent Saccharomyces cerevisiae strain: Effects of metal ions, sugars, temperature, pH, protein-denaturants and enzyme treatments. African Journal of Biotechnology, 9, 1037–1045.

    CAS  Google Scholar 

  • Maekawa, H., & Takegawa, K. (2020). Yeast flocculin: Methods for quantitative analysis of flocculation in yeast cells. In J. Hirabayashi (Ed.), Lectin purification and analysis. Methods in molecular biology. New York: Humana Press.

    Google Scholar 

  • Matsuzawa, T., Kageyama, Y., Ooishi, K., Kawamukai, M., & Takegawa, K. (2013). The zinc finger protein Gsf1 regulates Gsf2-dependent flocculation in fission yeast. FEMS Yeast Research, 13, 259–266.

    CAS  PubMed  Google Scholar 

  • Matsuzawa, T., Morita, T., Tanaka, N., Tohda, H., & Takegawa, K. (2011). Identification of a galactose-specific flocculin essential for non-sexual flocculation and filamentous growth in Schizosaccharomyces pombe. Molecular Microbiology, 82, 1531–1544.

    CAS  PubMed  Google Scholar 

  • Matsuzawa, T., Yoritsune, K., & Takegawa, K. (2012). MADS box transcription factor Mbx2/Pvg4 regulates invasive growth and flocculation by inducing gsf2+ expression in fission yeast. Eukaryotic Cell, 11, 151–158.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maundrell, K. (1993). Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene, 123, 127–130.

    CAS  PubMed  Google Scholar 

  • Miki, B. L. A., Poon, N. H., James, A. P., & Seligy, V. L. (1982). Possible mechanism for flocculation interactions governed by gene FLO1 in Saccharomyces cerevisiae. Journal of Bacteriology, 150, 878–889.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nayyar, A., Walker, G., Wardrop, F., & Adya, A. K. (2017). Flocculation in industrial strains of Saccharomyces cerevisiae: Role of cell wall polysaccharides and lectin-like receptors. Journal of Institute of Brewing, 123, 211–218.

    CAS  Google Scholar 

  • Nielsen, H., Engelbrecht, J., Brunak, S., & van Heijne, G. (1997). Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering, 10, 1–6.

    CAS  PubMed  Google Scholar 

  • Ohishi, K., Inoue, N., & Kinoshita, T. (2001). PIG-S and PIG-T, essential for GPI anchor attachment to proteins, form a complex with GAA1 and GPI8. The EMBO Journal, 20, 4088–4098.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park, Y. D., Kwon, S. J., Bae, K. S., & Park, H. M. (2018). LAMMER kinase Lkh1 is an upstream regulator of Prk1-mediated non-sexual flocculation in fission yeast. Mycobiology, 46, 236–241.

    PubMed  PubMed Central  Google Scholar 

  • Pérez, P., Cortés, J. C. G., Cansado, J., & Ribas, J. C. (2018). Fission yeast cell wall biosynthesis and cell integrity signalling. The Cell Surface, 4, 1–9.

    PubMed  PubMed Central  Google Scholar 

  • Rai, S. K., Atwood-Moore, A., & Levin, H. L. (2018). High-frequency lithium acetate transformation of Schizosaccharomyces pombe. In T. Singleton (Ed.), Methods in molecular biology (1721st ed.). Humana Press.

    Google Scholar 

  • Savaldi-Goldstein, S., Aviv, D., Davydov, O., & Fluhr, R. (2003). Alternative splicing modulation by a LAMMER kinase impinges on developmental and transcriptome expression. The Plant Cell, 15, 926–938.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schorling, S., Vallée, B., Barz, W. P., Riezman, H., & Oesterhelt, D. (2001). Lag1p and Lac1p are essential for the Acyl-CoA-dependent ceramide synthase reaction in Saccharomyces cerevisae. Molecular Biology of the Cell, 12, 3417–3427.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su, Y., Chen, J., & Huang, Y. (2018). Disruption of ppr3, ppr4, ppr6 or ppr10 induces flocculation and filamentous growth in Schizosaccharomyces pombe. FEMS Microbiology Letters, 365, fny41.

    ADS  Google Scholar 

  • Tanaka, N., Awai, A., Bhuiyan, M. S., Fujita, K., Fukui, H., & Takegawa, K. (1999). Cell surface galactosylation is essential for nonsexual flocculation in Schizosaccharomyces pombe. Journal of Bacteriology, 181, 1356–1359.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teunissen, A. W. R. H., & Steensma, H. Y. (1995). The dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene family. Yeast, 11, 1001–1013.

    CAS  PubMed  Google Scholar 

  • Yu, E. Y., Lee, J. H., Kang, W. H., Park, Y. H., Kim, L., & Park, H. M. (2013). Fission yeast LAMMER kinase Lkh1 regulates the cell cycle by phosphorylating the CDK-inhibitor Rum1. Biochemical and Biophysical Research Communications, 432, 80–85.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Part of this research was supported by the National Research Foundation of Korea (NRF) (Grant No. 2020R1F1A107307511 & 2021R1A2C10092291231482092640102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Moon Park.

Ethics declarations

Conflict of Interest

This research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 280 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, WH., Park, YD., Lim, JY. et al. LAMMER Kinase Governs the Expression and Cellular Localization of Gas2, a Key Regulator of Flocculation in Schizosaccharomyces pombe. J Microbiol. 62, 21–31 (2024). https://doi.org/10.1007/s12275-023-00097-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-023-00097-7

Keywords

Navigation