Skip to main content
Log in

Negative regulation of the acsA1 gene encoding the major acetyl-CoA synthetase by cAMP receptor protein in Mycobacterium smegmatis

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Acetyl-CoA synthetase (ACS) is the enzyme that irreversibly catalyzes the synthesis of acetyl-CoA from acetate, CoA-SH, and ATP via acetyl-AMP as an intermediate. In this study, we demonstrated that AcsA1 (MSMEG_6179) is the predominantly expressed ACS among four ACSs (MSMEG_6179, MSMEG_0718, MSMEG_3986, and MSMEG_5650) found in Mycobacterium smegmatis and that a deletion mutation of acsA1 in M. smegmatis led to its compromised growth on acetate as the sole carbon source. Expression of acsA1 was demonstrated to be induced during growth on acetate as the sole carbon source. The acsA1 gene was shown to be negatively regulated by Crp1 (MSMEG_6189) that is the major cAMP receptor protein (CRP) in M. smegmatis. Using DNase I footprinting analysis and site-directed mutagenesis, a CRP-binding site (GGTGA-N6-TCACA) was identified in the upstream regulatory region of acsA1, which is important for repression of acsA1 expression. We also demonstrated that inhibition of the respiratory electron transport chain by inactivation of the major terminal oxidase, aa3 cytochrome c oxidase, led to a decrease in acsA1 expression probably through the activation of CRP. In conclusion, AcsA1 is the major ACS in M. smegmatis and its gene is under the negative regulation of Crp1, which contributes to some extent to the induction of acsA1 expression under acetate conditions. The growth of M. smegmatis is severely impaired on acetate as the sole carbon source under respiration-inhibitory conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auchter, M., Cramer, A., Huser, A., Ruckert, C., Emer, D., Schwarz, P., Arndt, A., Lange, C., Kalinowski, J., Wendisch, V.F., and Eikmanns, B.J. 2011. RamA and RamB are global transcriptional regulators in Corynebacterium glutamicum and control genes for enzymes of the central metabolism. J. Biotechnol. 154, 126–139.

    Article  CAS  PubMed  Google Scholar 

  • Aung, H.L., Berney, M., and Cook, G.M. 2014. Hypoxia-activated cytochrome bd expression in Mycobacterium smegmatis is cyclic AMP receptor protein dependent. J. Bacteriol. 196, 3091–3097.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aung, H.L., Dixon, L.L., Smith, L.J., Sweeney, N.P., Robson, J.R., Berney, M., Buxton, R.S., Green, J., and Cook, G.M. 2015. Novel regulatory roles of cAMP receptor proteins in fast-growing environmental mycobacteria. Microbiology 161, 648–661.

    Article  CAS  PubMed  Google Scholar 

  • Beatty, C.M., Browning, D.F., Busby, S.J.W., and Wolfe, A.J. 2003. Cyclic AMP receptor protein-dependent activation of the Escherichia coli acsP2 promoter by a synergistic class III mechanism. J. Bacteriol. 185, 5148–5157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg, P. 1956. Acyl adenylates; an enzymatic mechanism of acetate activation. J. Biol. Chem. 222, 991–1013.

    Article  CAS  PubMed  Google Scholar 

  • Beste, D.J.V., Noh, K., Niedenfuhr, S., Mendum, T.A., Hawkins, N.D., Ward, J.L., Beale, M.H., Wiechert, W., and McFadden, J. 2013. 13C-flux spectral analysis of host-pathogen metabolism reveals a mixed diet for intracellular Mycobacterium tuberculosis. Chem. Biol. 20, 1012–1021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloch, H. and Segal, W. 1956. Biochemical differentiation of Mycobacterium tuberculosis grown in vivo and in vitro. J. Bacteriol. 72, 132–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bong, H.J., Ko, E.M., Song, S.Y., Ko, I.J., and Oh, J.I. 2019. Tripartite regulation of the glpFKD operon involved in glycerol catabolism by GylR, Crp, and SigF in Mycobacterium smegmatis. J. Bacteriol. 201, e00511–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, T.D., Jones-Mortimer, M.C., and Kornberg, H.L. 1977. The enzymic interconversion of acetate and acetyl-coenzyme A in Escherichia coli. J. Gen. Microbiol. 102, 327–336.

    Article  CAS  PubMed  Google Scholar 

  • Browning, D.F., Beatty, C.M., Sanstad, E.A., Gunn, K.E., Busby, S.J.W., and Wolfe, A.J. 2004. Modulation of CRP-dependent transcription at the Escherichia coli acsP2 promoter by nucleoprotein complexes: anti-activation by the nucleoid proteins FIS and IHF. Mol. Microbiol. 51, 241–254.

    Article  CAS  PubMed  Google Scholar 

  • Chopra, T., Hamelin, R., Armand, F., Chiappe, D., Moniatte, M., and McKinney, J.D. 2014. Quantitative mass spectrometry reveals plasticity of metabolic networks in Mycobacterium smegmatis. Mol. Cell. Proteomics 13, 3014–3028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark, D.P. and Cronan, J.E. 2005. Two-carbon compounds and fatty acids as carbon sources. EcoSal Plus 1. doi: https://doi.org/10.1128/ecosalplus.3.4.4.

  • Cramer, A., Gerstmeir, R., Schaffer, S., Bott, M., and Eikmanns, B.J. 2006. Identification of RamA, a novel LuxR-type transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J. Bacteriol. 188, 2554–2567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crosby, H.A., Heiniger, E.K., Harwood, C.S., and Escalante-Semerena, J.C. 2010. Reversible -lysine acetylation regulates the activity of acyl-CoA synthetases involved in anaerobic benzoate catabolism in Rhodopseudomonas palustris. Mol. Microbiol. 76, 874–888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enjalbert, B., Millard, P., Dinclaux, M., Portais, J.C., and Létisse, F. 2017. Acetate fluxes in Escherichia coli are determined by the thermodynamic control of the Pta-AckA pathway. Sci. Rep. 7, 42135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox, D.K. and Roseman, S. 1986. Isolation and characterization of homogeneous acetate kinase from Salmonella typhimurium and Escherichia coli. J. Biol. Chem. 261, 13487–13497.

    Article  CAS  PubMed  Google Scholar 

  • Gardner, J.G. and Escalante-Semerena, J.C. 2009. In Bacillus subtilis, the sirtuin protein deacetylase, encoded by the srtN gene (formerly yhdZ), and functions encoded by the acuABC genes control the activity of acetyl coenzyme A synthetase. J. Bacteriol. 191, 1749–1755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner, J.G., Grundy, F.J., Henkin, T.M., and Escalante-Semerena, J.C. 2006. Control of acetyl-coenzyme A synthetase (AcsA) activity by acetylation/deacetylation without NAD+ involvement in Bacillus subtilis. J. Bacteriol. 188, 5460–5468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerstmeir, R., Cramer, A., Dangel, P., Schaffer, S., and Eikmanns, B.J. 2004. RamB, a novel transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J. Bacteriol. 186, 2798–2809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green, M.R. and Sambrook, J. 2012. Molrcular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA.

    Google Scholar 

  • Green, J., Stapleton, M.R., Smith, L.J., Artymiuk, P.J., Kahramanoglou, C., Hunt, D.M., and Buxton, R.S. 2014. Cyclic-AMP and bacterial cyclic-AMP receptor proteins revisited: adaptation for different ecological niches. Curr. Opin. Microbiol. 18, 1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grundy, F.J., Turinsky, A.J., and Henkin, T.M. 1994. Catabolite regulation of Bacillus subtilis acetate and acetoin utilization genes by CcpA. J. Bacteriol. 176, 4527–4533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu, J., Deng, J.Y., Li, R., Wei, H., Zhang, Z., Zhou, Y., Zhang, Y., and Zhang, X.E. 2009. Cloning and characterization of NAD-dependent protein deacetylase (Rv1151c) from Mycobacterium tuberculosis. Biochemistry 74, 743–748.

    CAS  PubMed  Google Scholar 

  • Hayden, J.D., Brown, L.R., Gunawardena, H.P., Perkowski, E.F., Chen, X., and Braunstein, M. 2013. Reversible acetylation regulates acetate and propionate metabolism in Mycobacterium smegmatis. Microbiology 159, 1986–1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heroven, A.K. and Dersch, P. 2014. Coregulation of host-adapted metabolism and virulence by pathogenic yersiniae. Front. Cell. Infect. Microbiol. 4, 146.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeong, J.A., Lee, H.N., Ko, I.J., and Oh, J.I. 2013. Development of new vector systems as genetic tools applicable to mycobacteria. J. Life Sci. 23, 290–298.

    Article  Google Scholar 

  • Jeong, J.A., Park, S.W., Yoon, D., Kim, S., Kang, H.Y., and Oh, J.I. 2018. Roles of alanine dehydrogenase and induction of its gene in Mycobacterium smegmatis under respiration-inhibitory conditions. J. Bacteriol. 200, e00152–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jessee, J. 1986. New subcloning efficiency competent cells: > 1 × 106 transformants/mg. Focus 8, 9–10.

    Google Scholar 

  • Kakuda, H., Hosono, K., Shiroishi, K., and Ichihara, S. 1994. Identification and characterization of the ackA (acetate kinase A)-pta (phosphotransacetylase) operon and complementation analysis of acetate utilization by an ackA-pta deletion mutant of Escherichia coli. J. Biochem. 116, 916–922.

    Article  CAS  PubMed  Google Scholar 

  • Kim, M.J., Park, K.J., Ko, I.J., Kim, Y.M., and Oh, J.I. 2010. Different roles of DosS and DosT in the hypoxic adaptation of Mycobacteria. J. Bacteriol. 192, 4868–4875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko, E.M., Kim, J.Y., Lee, S., Kim, S., Hwang, J., and Oh, J.I. 2021. Regulation of the icl1 gene encoding the major isocitrate lyase in Mycobacterium smegmatis. J. Bacteriol. 203, e0040221.

    Article  PubMed  Google Scholar 

  • Ko, E.M. and Oh, J.I. 2020. Induction of the cydAB operon encoding the bd quinol oxidase under respiration-inhibitory conditions by the major cAMP receptor protein MSMEG_6189 in Mycobacterium smegmatis. Front. Microbiol. 11, 608624.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumari, S., Beatty, C.M., Browning, D.F., Busby, S.J., Simel, E.J., Hovel-Miner, G., and Wolfe, A.J. 2000. Regulation of acetyl coenzyme A synthetase in Escherichia coli. J. Bacteriol. 182, 4173–4179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari, S., Tishel, R., Eisenbach, M., and Wolfe, A.J. 1995. Cloning, characterization, and functional expression of acs, the gene which encodes acetyl coenzyme A synthetase in Escherichia coli. J. Bacteriol. 177, 2878–2886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuprat, T., Johnsen, U., Ortjohann, M., and Schönheit, P. 2020. Acetate metabolism in archaea: characterization of an acetate transporter and of enzymes involved in acetate activation and gluconeogenesis in Haloferax volcanii. Front. Microbiol. 11, 604926.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, H.N., Ji, C.J., Lee, H.H., Park, J., Seo, Y.S., Lee, J.W., and Oh, J.I. 2018. Roles of three FurA paralogs in the regulation of genes pertaining to peroxide defense in Mycobacterium smegmatis mc2 155. Mol. Microbiol. 108, 661–682.

    Article  CAS  PubMed  Google Scholar 

  • Lee, H.J., Lang, P.T., Fortune, S.M., Sassetti, C.M., and Alber, T. 2012. Cyclic AMP regulation of protein lysine acetylation in Mycobacterium tuberculosis. Nat. Struct. Mol. Biol. 19, 811–818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, H.N., Lee, N.O., Han, S.J., Ko, I.J., and Oh, J.I. 2014. Regulation of the ahpC gene encoding alkyl hydroperoxide reductase in Mycobacterium smegmatis. PLoS ONE 9, e111680.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, W., VanderVen, B.C., Fahey, R.J., and Russell, D.G. 2013. Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress. J. Biol. Chem. 288, 6788–6800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, R., Gu, J., Chen, P., Zhang, Z., Deng, J., and Zhang, X. 2011. Purification and characterization of the acetyl-CoA synthetase from Mycobacterium tuberculosis. Acta Biochim. Biophys. Sin. 43, 891–899.

    Article  CAS  PubMed  Google Scholar 

  • Liu, W.B., Liu, X.X., Shen, M.J., She, G.L., and Ye, B.C. 2019. The nitrogen regulator GlnR directly controls transcription of the prpDBC operon involved in methylcitrate cycle in Mycobacterium smegmatis. J. Bacteriol. 201, e00099–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, X.X., Shen, M.J., Liu, W.B., and Ye, B.C. 2018. GlnR-mediated regulation of short-chain fatty acid assimilation in Mycobacterium smegmatis. Front. Microbiol. 9, 1311.

    Article  PubMed  PubMed Central  Google Scholar 

  • Masiewicz, P., Brzostek, A., Wolański, M., Dziadek, J., and Zakrzewska-Czerwińska J. 2012. A novel role of the PrpR as a transcription factor involved in the regulation of methylcitrate pathway in Mycobacterium tuberculosis. PLoS ONE 7, e43651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Micklinghoff, J.C., Breitinger, K.J., Schmidt, M., Geffers, R., Eikmanns, B.J., and Bange, F.C. 2009. Role of the transcriptional regulator RamB (Rv0465c) in the control of the glyoxylate cycle in Mycobacterium tuberculosis. J. Bacteriol. 191, 7260–7269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molle, V., Nakaura, Y., Shivers, R.P., Yamaguchi, H., Losick, R., Fujita, Y., and Sonenshein, A.L. 2003. Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis. J. Bacteriol. 185, 1911–1922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munoz-Elias, E.J. and McKinney, J.D. 2005. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat. Med. 11, 638–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nambi, S., Badireddy, S., Visweswariah, S.S., and Anand, G.S. 2012. Cyclic AMP-induced conformational changes in mycobacterial protein acetyltransferases. J. Biol. Chem. 287, 18115–18129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nambi, S., Basu, N., and Visweswariah, S.S. 2010. cAMP-regulated protein lysine acetylases in mycobacteria. J. Biol. Chem. 285, 24313–24323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nambi, S., Gupta, K., Bhattacharyya, M., Ramakrishnan, P., Ravikumar, V., Siddiqui, N., Thomas, A.T., and Visweswariah, S.S. 2013. Cyclic AMP-dependent protein lysine acylation in mycobacteria regulates fatty acid and propionate metabolism. J. Biol. Chem. 288, 14114–14124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh, J.I. and Kaplan, S. 1999. The cbb3 terminal oxidase of Rhodobacter sphaeroides 2.4.1: structural and functional implications for the regulation of spectral complex formation. Biochemistry 38, 2688–2696.

    Article  CAS  PubMed  Google Scholar 

  • Pandey, A.K. and Sassetti, C.M. 2008. Mycobacterial persistence requires the utilization of host cholesterol. Proc. Natl. Acad. Sci. USA 105, 4376–4380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puckett, S., Trujillo, C., Wang, Z., Eoh, H., Ioerger, T.R., Krieger, I., Sacchettini, J., Schnappinger, D., Rhee, K.Y., and Ehrt, S. 2017. Glyoxylate detoxification is an essential function of malate synthase required for carbon assimilation in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 114, E2225–E2232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi, N., She, G.L., Du, W., and Ye, B.C. 2021. Mycobacterium smegmatis GlnR regulates the glyoxylate cycle and the methylcitrate cycle on fatty acid metabolism by repressing icl transcription. Front. Microbiol. 12, 603835.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reinscheid, D.J., Schnicke, S., Rittmann, D., Zahnow, U., Sahm, H., and Eikmanns, B.J. 1999. Cloning, sequence analysis, expression and inactivation of the Corynebacterium glutamicum ptaack operon encoding phosphotransacetylase and acetate kinase. Microbiology 145, 503–513.

    Article  CAS  PubMed  Google Scholar 

  • Rickman, L., Scott, C., Hunt, D.M., Hutchinson, T., Menéndez, M.C., Whalan, R., Hinds, J., Colston, M.J., Green, J., and Buxton, R.S. 2005. A member of the cAMP receptor protein family of transcription regulators in Mycobacterium tuberculosis is required for virulence in mice and controls transcription of the rpfA gene coding for a resuscitation promoting factor. Mol. Microbiol. 56, 1274–1286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson, M.D., McCarthy, D.J., and Smyth, G.K. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140.

    Article  CAS  PubMed  Google Scholar 

  • Rücker, N., Billig, S., Bücker, R., Jahn, D., Wittmann, C., and Bange, F.C. 2015. Acetate dissimilation and assimilation in Mycobacterium tuberculosis depend on carbon availability. J. Bacteriol. 197, 3182–3190.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadykov, M.R., Thomas, V.C., Marshall, D.D., Wenstrom, C.J., Moormeier, D.E., Widhelm, T.J., Nuxoll, A.S., Powers, R., and Bayles, K.W. 2013. Inactivation of the Pta-AckA pathway causes cell death in Staphylococcus aureus. J. Bacteriol. 195, 3035–3044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, R., Zaveri, A., Gopalakrishnapai, J., Srinath, T., Varshney, U., and Visweswariah, S.S. 2014. Paralogous cAMP receptor proteins in Mycobacterium smegmatis show biochemical and functional divergence. Biochemistry 53, 7765–7776.

    Article  CAS  PubMed  Google Scholar 

  • Shimada, T., Fujita, N., Yamamoto, K., and Ishihama, A. 2011. Novel roles of cAMP receptor protein (CRP) in regulation of transport and metabolism of carbon sources. PLoS ONE 6, e20081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin, J.H., Yang, J.Y., Jeon, B.Y., Yoon, Y.J., Cho, S.N., Kang, Y.H., Ryu, D.H., and Hwang, G.S. 2011. 1H NMR-based metabolomic profiling in mice infected with Mycobacterium tuberculosis. J. Proteome Res. 10, 2238–2247.

    Article  CAS  PubMed  Google Scholar 

  • Snapper, S.B., Melton, R.E., Mustafa, S., Kieser, T., and Jacobs, W.R.Jr. 1990. Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol. Microbiol. 4, 1911–1919.

    Article  CAS  PubMed  Google Scholar 

  • Somashekar, B.S., Amin, A.G., Rithner, C.D., Troudt, J., Basaraba, R., Izzo, A., Crick, D.C., and Chatterjee, D. 2011. Metabolic profiling of lung granuloma in Mycobacterium tuberculosis infected guinea pigs: ex vivo 1H magic angle spinning NMR studies. J. Proteome Res. 10, 4186–4195.

    Article  CAS  PubMed  Google Scholar 

  • Starai, V.J., Celic, I., Cole, R.N., Boeke, J.D., and Escalante-Semerena, J.C. 2002. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 298, 2390–2392.

    Article  CAS  PubMed  Google Scholar 

  • Starai, V.J. and Escalante-Semerena, J.C. 2004. Identification of the protein acetyltransferase (Pat) enzyme that acetylates acetyl-CoA synthetase in Salmonella enterica. J. Mol. Biol. 340, 1005–1012.

    Article  CAS  PubMed  Google Scholar 

  • Stover, C.K., de la Cruz, V.F., Fuerst, T.R., Burlein, J.E., Benson, L.A., Bennett, L.T., Bansal, G.P., Young, J.F., Lee, M.H., Hatfull, G.F., et al. 1991. New use of BCG for recombinant vaccines. Nature 351, 456–460.

    Article  CAS  PubMed  Google Scholar 

  • Tabor, S. and Richardson, C.C. 1985. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc. Natl. Acad. Sci. USA 82, 1074–1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Utsumi, R., Noda, M., Kawamukai, M., and Komano, T. 1989. Control mechanism of the Escherichia coli K-12 cell cycle is triggered by the cyclic AMP-cyclic AMP receptor protein complex. J. Bacteriol. 171, 2909–2912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van den Berg, M.A. and Steensma, H.Y. 1995. ACS2, a Saccharomyces cerevisiae gene encoding acetyl-coenzyme A synthetase, essential for growth on glucose. Eur. J. Biochem. 231, 704–713.

    Article  CAS  PubMed  Google Scholar 

  • VanderVen, B.C., Fahey, R.J., Lee, W., Liu, Y., Abramovitch, R.B., Memmott, C., Crowe, A.M., Eltis, L.D., Perola, E., Deininger, D.D., et al. 2015. Novel inhibitors of cholesterol degradation in Mycobacterium tuberculosis reveal how the bacterium’s metabolism is constrained by the intracellular environment. PLoS Pathog. 11, e1004679.

    Article  PubMed  PubMed Central  Google Scholar 

  • Webster, L.T.Jr. 1963. Studies of the acetyl coenzyme A synthetase reaction. I. Isolation and characterization of enzyme-bound acetyl adenylate. J. Biol. Chem. 238, 4010–4015.

    Article  CAS  PubMed  Google Scholar 

  • Wolfe, A.J. 2005. The acetate switch. Microbiol. Mol. Biol. Rev. 69, 12–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, H., Hegde, S.S., and Blanchard, J.S. 2011. Reversible acetylation and inactivation of Mycobacterium tuberculosis acetyl-CoA synthetase is dependent on cAMP. Biochemistry 50, 5883–5892.

    Article  CAS  PubMed  Google Scholar 

  • Xu, J.Y., Zhao, L., Liu, X., Hu, H., Liu, P., Tan, M., and Ye, B.C. 2018. Characterization of the lysine acylomes and the substrates regulated by protein acyltransferase in Mycobacterium smegmatis. ACS Chem. Biol. 13, 1588–1597.

    Article  CAS  PubMed  Google Scholar 

  • Yanisch-Perron, C., Vieira, J., and Messing, J. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103–119.

    Article  CAS  PubMed  Google Scholar 

  • Yu, B.J., Kim, J.A., Moon, J.H., Ryu, S.E., and Pan, J.G. 2008. The diversity of lysine-acetylated proteins in Escherichia coli. J. Microbiol. Biotechnol. 18, 1529–1536.

    CAS  PubMed  Google Scholar 

  • Zalieckas, J.M., Wray, L.V.Jr., and Fisher, S.H. 1998. Expression of the Bacillus subtilis acsA gene: position and sequence context affect cre-mediated carbon catabolite repression. J. Bacteriol. 180, 6649–6654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a 2-years Research Grant of Pusan National University to JIO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Il Oh.

Additional information

Conflict of Interest

The authors declare that they have no conflicts of interest with the contents of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, EM., Oh, Y. & Oh, JI. Negative regulation of the acsA1 gene encoding the major acetyl-CoA synthetase by cAMP receptor protein in Mycobacterium smegmatis. J Microbiol. 60, 1139–1152 (2022). https://doi.org/10.1007/s12275-022-2347-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-022-2347-x

Keywords

Navigation