Skip to main content
Log in

Integrated proteomic and metabolomic analyses reveal significant changes in chloroplasts and mitochondria of pepper (Capsicum annuum L.) during Sclerotium rolfsii infection

  • Microbial Pathogenesis and Host-Microbe Interaction
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Infection by Sclerotium rolfsii will cause serious disease and lead to significant economic losses in chili pepper. In this study, the response of pepper during S. rolfsii infection was explored by electron microscopy, physiological determination and integrated proteome and metabolome analyses. Our results showed that the stomata of pepper stems were important portals for S. rolfsii infection. The plant cell morphology was significantly changed at the time of the fungal hyphae just contacting (T1) or surrounding (T2) the pepper. The chlorophyll, carotenoid, and MDA contents and the activities of POD, SOD, and CAT were markedly upregulated at T1 and T2. Approximately 4129 proteins and 823 metabolites were clearly identified in proteome and metabolome analyses, respectively. A change in 396 proteins and 54 metabolites in pepper stem tissues was observed at T1 compared with 438 proteins and 53 metabolites at T2. The proteins and metabolites related to photosynthesis and antioxidant systems in chloroplasts and mitochondria were disproportionally affected by S. rolfsii infection, impacting carbohydrate and amino acid metabolism. This study provided new insights into the response mechanism in pepper stems during S. rolfsii infection, which can guide future work on fungal disease resistance breeding in pepper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amin, B., Atif, M.J., Wang, X., Meng, H., Ghani, M.I., Ali, M., Ding, Y., Li, X., and Cheng, Z. 2021. Effect of low temperature and high humidity stress on physiology of cucumber at different leaf stages. Plant Biol. 23, 785–796.

    Article  CAS  PubMed  Google Scholar 

  • Azizi, P., Osman, M., Hanafi, M.M., Sahebi, M., Yusop, M.R., and Taheri, S. 2019. Adaptation of the metabolomics profile of rice after Pyricularia oryzae infection. Plant Physiol. Biochem. 144, 466–479.

    Article  CAS  PubMed  Google Scholar 

  • Babadoost, M., Pavon, C., Islam, S.Z., and Tian, D. 2015. Phytophthora blight (Phytophthora capsici) of pepper and its management. Acta Hortic. 1105, 61–66.

    Article  Google Scholar 

  • Bashtanova, U.B. and Flowers, T.J. 2012. Effect of low salinity on ion accumulation, gas exchange and postharvest drought resistance and habit of Coriandrum sativum L. Plant Soil 355, 199–214.

    Article  CAS  Google Scholar 

  • Bateman, D.F. and Beer, S.V. 1965. Simultaneous production and synergistic action of oxalic acid and polygalacturonase during pathogenesis by Sclerotium rolfsii. Phytopathology 55, 204–211.

    CAS  PubMed  Google Scholar 

  • Bi, A., Wang, T., Wang, G., Zhang, L., Wassie, M., Amee, M., Xu, H., Hu, Z., Liu, A., Fu, J., et al. 2021. Stress memory gene FaHSP17.8-CII controls thermotolerance via remodeling PSII and ROS signaling in tall fescue. Plant Physiol. 187, 1163–1176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillejo, M.A., Fondevilla-Aparicio, S., Fuentes-Almagro, C., and Rubiales, D. 2020. Quantitative analysis of target peptides related to resistance against Ascochyta Blight (Peyronellaea pinodes) in Pea. J. Proteome Res. 19, 1000–1012.

    Article  CAS  PubMed  Google Scholar 

  • Chan, K.X., Phua, S.Y., Crisp, P., McQuinn, R., and Pogson, B.J. 2016. Learning the languages of the chloroplast, retrograde signaling and beyond. Annu. Rev. Plant Biol. 67, 25–53.

    Article  CAS  PubMed  Google Scholar 

  • Chen, T., Zhang, L., Shang, H., Liu, S., Peng, J., Gong, W., Shi, Y., Zhang, S., Li, J., Gong, J., et al. 2016. iTRAQ-based quantitative proteomic analysis of cotton roots and leaves reveals pathways associated with salt stress. PLoS ONE 11, e0148487.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, Y., Zhou, Z., and Min, W. 2018. Mitochondria, oxidative stress and innate immunity. Front. Physiol. 9, 1487.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chin, E.L., Ramsey, J.S., Mishchuk, D.O., Saha, S., Foster, E., Chavez, J.D., Howe, K., Zhong, X., Polek, M., Godfrey, K.E., et al. 2020. Longitudinal transcriptomic, proteomic, and metabolomic analyses of Citrus sinensis (L.) osbeck graft-inoculated with “Candidatus Liberibacter asiaticus.” J. Proteome Res. 19, 719–732.

    Article  CAS  PubMed  Google Scholar 

  • de Souza, A., Wang, J.Z., and Dehesh, K. 2017. Retrograde signals: Integrators of interorganellar communication and orchestrators of plant development. Annu. Rev. Plant Biol. 68, 85–108.

    Article  CAS  PubMed  Google Scholar 

  • Dong, H., Li, Y., Fan, H., Zhou, D., and Li, H. 2019. Quantitative proteomics analysis reveals resistance differences of banana cultivar ‘Brazilian’ to Fusarium oxysporum f. sp. cubense races 1 and 4. J. Proteomics 203, 103376.

    Article  CAS  PubMed  Google Scholar 

  • Farag Hanaa, R.M., Abdou, Z.A., Salama, D.A., Ibrahim, M.A.R., and Sror, H.A.M. 2011. Effect of neem and willow aqueous extracts on fusarium wilt disease in tomato seedlings: induction of antioxidant defensive enzymes. Ann. Agric. Sci. 56, 1–7.

    Article  Google Scholar 

  • Ghosh, S., Kanwar, P., and Jha, G. 2017. Alterations in rice chloroplast integrity, photosynthesis and metabolome associated with pathogenesis of Rhizoctonia solani. Sci. Rep. 7, 41610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glass, K. and Girvan, M. 2014. Annotation enrichment analysis: an alternative method for evaluating the functional properties of gene sets. Sci. Rep. 4, 4191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeon, Y.J., Kwon, H.W., Nam, J.S., and Kim, S.H. 2006. Characterization of Sclerotinia sclerotiorum isolated from Paprika. Mycobiology 34, 154–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia, T., Wang, J., Chang, W., Fan, X., Sui, X., and Song, F. 2019. Proteomics analysis of E. angustifolia seedlings inoculated with arbuscular mycorrhizal Fungi under salt stress. Int. J. Mol. Sci. 20, 788.

    Article  CAS  PubMed Central  Google Scholar 

  • Kumar, A. and Prasad, M.N.V. 2018. Plant-lead interactions, transport, toxicity, tolerance, and detoxification mechanisms. Ecotoxicol. Environ. Saf. 166, 401–418.

    Article  CAS  PubMed  Google Scholar 

  • Kushwaha, N.K., Mansi, Sahu, P.P., Prasad, M., and Chakrabroty, S. 2019. Chilli leaf curl virus infection downregulates the expression of the genes encoding chloroplast proteins and stress-related proteins. Physiol. Mol. Biol. Plants 25, 1185–1196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, J., Dang, F., Chen, Y., Guan, D., and He, S. 2019. CaWRKY27 negatively regulates salt and osmotic stress responses in pepper. Plant Physiol. Biochem. 145, 43–51.

    Article  CAS  PubMed  Google Scholar 

  • Lindner, W.A., Dennison, C., and Berry, R.K. 1983. Purification and properties of a carboxymethylcellulase from Sclerotium rolfsii. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 746, 160–167.

    Article  CAS  Google Scholar 

  • Liu, F., Yu, H., Deng, Y., Zheng, J., Liu, M., Ou, L., Yang, B., Dai, X., Ma, Y., Feng, S., et al. 2017. PepperHub, an informatics hub for the chili pepper research community. Mol. Plant 10, 1129–1132.

    Article  CAS  PubMed  Google Scholar 

  • Lopes, S.S., Costa, J.F.V., Barros, B.A., Carneiro, A.A., and Sousa, S.M. 2020. Auxin independent1 (Axi1) as an endogenous gene for copy number determination in transgenic tobacco. Crop Breed. Appl. Biotechnol. 20, e289220212.

    Article  CAS  Google Scholar 

  • Lou, Y., Zhao, P., Wang, D., Amombo, E., Sun, X., Wang, H., and Zhuge, Y. 2017. Germination, physiological responses and gene expression of tall fescue (Festuca arundinacea Schreb.) growing under Pb and Cd. PLoS ONE 12, e0169495.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo, X.D., Dai, L.F., Wang, S.B., Wolukau, J.N., Jahn, M., and Chen, J.F. 2006. Male gamete development and early tapetal degeneration in cytoplasmic male-sterile pepper investigated by meiotic, anatomical and ultrastructural analyse. Plant Breed. 125, 395–399.

    Article  Google Scholar 

  • Ma, J., Chen, T., Wu, S., Yang, C., Bai, M., Shu, K., Li, K., Zhang, G., Jin, Z., He, F., et al. 2019. iProX, an integrated proteome resource. Nucleic Acids Res. 47, D1211–D1217.

    Article  PubMed  Google Scholar 

  • Mao, T., Chen, X., Ding, H., Chen, X., and Jiang, X. 2020. Pepper growth promotion and Fusarium wilt biocontrol by Trichoderma hamatum MHT1134. Biocontrol Sci. Technol. 30, 1228–1243.

    Article  Google Scholar 

  • Matuz-Mares, D., Matus-Ortega, G., Cárdenas-Monroy, C., Romero-Aguilar, L., Villalobos-Rocha, J.C., Vázquez-Meza, H., Guerra-Sánchez, G., Peña-Díaz, A., and Pardo, J.P. 2018. Expression of alternative NADH dehydrogenases (NDH-2) in the phytopathogenic fungus Ustilago maydis. FEBS Open Bio. 8, 1267–1279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGovern, R.J., Bouzar, H., and Harbaugh, B.K. 2000. Stem blight of Eustoma grandiflorum caused by Sclerotium rolfsii. Plant Dis. 84, 490.

    Article  CAS  PubMed  Google Scholar 

  • Medina-Puche, L., Tan, H., Dogra, V., Wu, M., Rosas-Diaz, T., Wang, L., Ding, X., Zhang, D., Fu, X., Kim, C., et al. 2020. A defense pathway linking plasma membrane and chloroplasts and co-opted by pathogens. Cell 182, 1109–1124.

    Article  CAS  PubMed  Google Scholar 

  • Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405–410.

    Article  CAS  PubMed  Google Scholar 

  • Mohammadbagheri, L., Nasr-Esfahani, M., Abdossi, V., and Naderi, D. 2021. Genetic diversity and biochemical analysis of Capsicum annuum (Bell pepper) in response to root and basal rot disease, Phytophthora capsici. Phytochemistry 190, 112884.

    Article  CAS  PubMed  Google Scholar 

  • Palmieri, F., Estoppey, A., House, G.L., Lohberger, A., Bindschedler, S., Chain, P.S.G., and Junier, P. 2019. Oxalic acid, a molecule at the crossroads of bacterial-fungal interactions. Adv. Appl. Microbiol. 106, 49–77.

    Article  CAS  PubMed  Google Scholar 

  • Punja, Z.K. 1985. The biology, ecology and control of Sclerotium rolfsii. Annu. Rev. Phytopathol. 23, 97–127.

    Article  CAS  Google Scholar 

  • Punja, Z.K., Huang, J.S., and Jenkins, S.F. 1985. Relationship of mycelial growth and production of oxalic acid and cell wall degrading enzymes to virulence in Sclerotium rolfsii. Can. J. Plant Pathol. 7, 109–117.

    Article  CAS  Google Scholar 

  • Refshauge, S., Watt, M., McCully, M.E., and Huang, C.X. 2006. Frozen in time, a new method using cryo-scanning electron microscopy to visualize root-fungal interactions. New Phytol. 172, 369–374.

    Article  PubMed  Google Scholar 

  • Reiland, S., Grossmann, J., Baerenfaller, K., Gehrig, P., Nunes-Nesi, A., Fernie, A.R., Gruissem, W., and Baginsky, S. 2011. Integrated proteome and metabolite analysis of the de-etiolation process in plastids from rice (Oryza sativa L.). Proteomics 11, 1751–1763.

    Article  CAS  PubMed  Google Scholar 

  • Ren, L., Su, S., Yang, X., Xu, Y., Huang, Q., and Shen, Q. 2008. Intercropping with aerobic rice suppressed Fusarium wilt in watermelon. Soil Biol. Biochem. 40, 834–844.

    Article  CAS  Google Scholar 

  • Rong, W., Wang, X., Wang, X., Massart, S., and Zhang, Z. 2018. Molecular and ultrastructural mechanisms underlying yellow dwarf symptom formation in wheat after infection of barley yellow dwarf virus. Int. J. Mol. Sci. 19, 1187.

    Article  PubMed Central  CAS  Google Scholar 

  • Sadana, J.C., Lachke, A.H., and Patil, R.V. 1984. Endo-(1→4)-β-D-glucanases from Sclerotium rolfsii. Purification, substrate specificity, and mode of action. Carbohydr. Res. 133, 297–312.

    Article  CAS  Google Scholar 

  • Shah, K., Kuma, R.G., Verma, S., and Dubey, R.S. 2001. Effect of cadmium on lipid peroxidation, superoxide anion generation and activitivies of antioxidant enzymes in growing rice seedlings. Plant Sci. 161, 1135–1144.

    Article  CAS  Google Scholar 

  • Shen, L., Yang, S., Yang, F., Guan, D., and He, S. 2020. CaCBL1 acts as a positive regulator in pepper response to Ralstonia solanacearum. Mol. Plant Microbe Interact. 33, 945–957.

    Article  CAS  PubMed  Google Scholar 

  • Sims, D.A. and Gamon, J.A. 2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 81, 337–354.

    Article  Google Scholar 

  • Soldano, A., Yao, H., Rivera, M., Ceccarelli, E.A., and Catalano-Dupuy, D.L. 2014. Heme-iron utilization by Leptospira interrogans requires a heme oxygenase and a plastidic-type ferredoxin-NADP+ reductase. Biochim. Biophys. Acta 1840, 3208–3217.

    Article  CAS  PubMed  Google Scholar 

  • Sowden, R.G., Watson, S.J., and Jarvis, P. 2018. The role of chloroplasts in plant pathology. Essays Biochem 62, 21–39.

    Article  PubMed  Google Scholar 

  • Tang, J., Ding, Y., Nan, J., Yang, X., Sun, L., Zhao, X., and Jiang, L. 2018. Transcriptome sequencing and ITRAQ reveal the detoxification mechanism of Bacillus GJ1, a potential biocontrol agent for Huanglongbing. PLoS ONE 13, e0200427.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tuncer, S. and Eken, C. 2013. Anastomosis grouping of Rhizoctonia solani and binucleate Rhizoctonia spp. isolated from pepper in Erzincan, Turkey. Plant Protect. Sci. 49, 127–131.

    Article  Google Scholar 

  • Van Aken, B. 2020. Response to the note to editor: comments on “transcriptomic response of Arabidopsis thaliana exposed to hydroxylated polychlorinated biphenyls (OH-PCBs)”. Int. J. Phytoremediation 22, 224–225.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Kou, X., Wu, C., Fan, G., and Li, T. 2020. Methyl jasmonate induces the resistance of postharvest blueberry to gray mold caused by Botrytis cinerea. J. Sci. Food Agric. 100, 4272–4281.

    Article  CAS  PubMed  Google Scholar 

  • Wiśniewski, J.R., Zougman, A., Nagaraj, N., and Mann, M. 2009. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362.

    Article  PubMed  CAS  Google Scholar 

  • Xie, L.B., Wang, X., Peng, M., Zhou, Y., Chen, L.X., Liu, L.X., Gao, Y.L., and Guo, Y.H. 2017. Comparative proteome analysis in hot pepper (Capsicum annuum L.) after space flight. Phyton 86, 236–245.

    Article  Google Scholar 

  • Xie, X., Wu, J., Cheng, Y., Shi, J., Zhang, X., Shi, Y., Chai, A., and Li, B. 2019. First report of Stemphylium lycopersici causing leaf spot on hot pepper in China. Can. J. Plant Pathol. 41, 124–128.

    Article  Google Scholar 

  • Xiong, Q., Zhong, L., Shen, T., Cao, C., He, H., and Chen, X. 2019. iTRAQ-based quantitative proteomic and physiological analysis of the response to N deficiency and the compensation effect in rice. BMC Genomics 20, 681.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang, P., Li, Y., He, C., Yan, J., Zhang, W., Li, X., Xiang, F., Zuo, Z., Li, X., Zhu, Y., et al. 2020. Phenotype and TMT-based quantitative proteomics analysis of Brassica napus reveals new insight into chlorophyll synthesis and chloroplast structure. J. Proteomics 214, 103621.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., Peng, H., Zhu, S., Xing, J., Li, X., Zhu, Z., Zheng, J., Wang, L., Wang, B., Chen, J., et al. 2020. Nematode-encoded RALF peptide mimics facilitate parasitism of plants through the FERONIA receptor kinase. Mol. Plant 13, 1434–1454.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, C. and Shi, S. 2018. Physiological and proteomic responses of contrasting alfalfa (Medicago sativa L.) varieties to PEG-induced osmotic stress. Front. Plant Sci. 9, 242.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Tang, H.R., and Lou, Y. 2008. Variation in antioxidant enzyme activities of two strawberry cultivars with short-term low temperature stress. World J. Agri. Sci. 4, 458–462.

    Google Scholar 

  • Zhao, Y., Fu, G., Wang, J., Guo, M., and Yu, G. 2019. Gene function prediction based on gene ontology hierarchy preserving hashing. Genomics 111, 334–342.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, J., Zou, X., Mao, Z., and Xie, B. 2011. A novel pepper (Capsicum annuum L.) WRKY gene, CaWRKY30, is involved in pathogen stress responses. J. Plant Biol. 54, 329–337.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Shanghai Zhongke New Life Biotechnology Co., Ltd for assisting in sequencing. This work was supported by the National Natural Science Foundation of China [grant numbers 32172361]; China Agriculture Research System [grant numbers CARS-23-01A]; Hunan Province Key Research and Development Program [grant numbers 2019-NK2191]; Natural Science Foundation of Hunan Province of China [grant numbers 2020JJ4181]; Scientific and Technological Innovation Leading Plan of High-Tech Industry in Hunan Province of China [grant numbers 2020NK2006]

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanqing Ma or Jingyuan Zheng.

Ethics declarations

The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, H., Wen, X., Deng, X. et al. Integrated proteomic and metabolomic analyses reveal significant changes in chloroplasts and mitochondria of pepper (Capsicum annuum L.) during Sclerotium rolfsii infection. J Microbiol. 60, 511–525 (2022). https://doi.org/10.1007/s12275-022-1603-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-022-1603-4

Keywords

Navigation