Skip to main content
Log in

Availability of polyamines affects virulence and survival of Neisseria meningitidis

  • Microbial Pathogenesis and Host-Microbe Interaction
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Neisseria meningitidis is a Gram-negative human-restricted pathogen that asymptomatically resides in the human respiratory tract. Meningococcal meningitis and sepsis both are caused by N. meningitidis. The bacterium must adhere to host epithelial cells in order to colonize effectively. The factors that determine the initial attachment to the host and dispersal, are not well understood. Metabolites released by the host may aid in meningococcal colonization and dissemination. Polyamines are aliphatic polycations that assist in cell survival and proliferation. The virulence properties of N. meningitidis after exposure to polyamines were investigated. Adhesion to nasopharyngeal epithelial cells increased in the presence of spermine. Also, the relative expression of adhesin, pilE increased in the presence of spermine. Further, relative expression of ctrA, ctrB and lipB was upregulated in the presence of spermidine, indicating increased capsule formation. Upregulated capsule synthesis of N. meningitidis in the presence of spermidine allows it to survive in murine macrophages. The study suggests the importance of the extracellular pool of polyamines in promoting virulence in N. meningitidis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banerji, R., Kanojiya, P., Patil, A., and Saroj, S.D. 2021. Polyamines in the virulence of bacterial pathogens of respiratory tract. Mol. Oral Microbiol. 36, 1–11.

    Article  CAS  Google Scholar 

  • Barraud, N., Moscoso, J.A., Ghigo, J.M., and Filloux, A. 2014. Methods for studying biofilm dispersal in Pseudomonas aeruginosa. In Filloux, A. and Ramos, J.L. (eds.), Pseudomonas Methods and Protocols. Methods in Molecular Biology (Methods and Protocols), vol. 1149, pp. 643–651. Humana Press, New York, USA.

    Chapter  Google Scholar 

  • Bartley, S.N., Tzeng, Y.L., Heel, K., Lee, C.W., Mowlaboccus, S., Seemann, T., Lu, W., Lin, Y.H., Ryan, C.S., Peacock, C., et al. 2013. Attachment and invasion of Neisseria meningitidis to host cells is related to surface hydrophobicity, bacterial cell size and capsule. PLoS ONE 8, e55798.

    Article  CAS  Google Scholar 

  • Bartos, F., Bartos, D., Grettie, D.P., Campbell, R.A., Marton, L.J., Smith, R.G. and Daves, G.D.Jr. 1977. Polyamine levels in normal human serum. Comparison of analytical methods. Biochem. Biophys. Res. Commun. 75, 915–919.

    Article  CAS  Google Scholar 

  • Breakwell, D.P., Moyes, R.B., and Reynolds, J. 2009. Differential staining of bacteria: capsule stain. Curr. Protoc. Microbiol. 15, A.3I.1–A.3I.4. doi: https://doi.org/10.1002/9780471729259.mca03is15.

    Google Scholar 

  • Clark, S.E. 2020. Commensal bacteria in the upper respiratory tract regulate susceptibility to infection. Curr. Opin. Immunol. 66, 42–49.

    Article  CAS  Google Scholar 

  • Coffey, B.M. and Anderson, G.G. 2014. Biofilm formation in the 96-well microtiter plate. In Filloux, A. and Ramos, J.L. (eds.), Pseudomonas Methods and Protocols. Methods in Molecular Biology (Methods and Protocols), vol. 1149, pp. 631–641. Humana Press, New York, USA.

    Chapter  Google Scholar 

  • Costerton, J.W., Stewart, P.S., and Greenberg, E.P. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322.

    Article  CAS  Google Scholar 

  • Engman, J., Negrea, A., Sigurlásdóttir, S., Geörg, M., Eriksson, J., Eriksson, O.S., Kuwae, A., Sjölinder, H., and Jonsson, A.B. 2016. Neisseria meningitidis polynucleotide phosphorylase affects aggregation, adhesion, and virulence. Infect. Immun. 84, 1501–1513.

    Article  Google Scholar 

  • Exley, R.M., Shaw, J., Mowe, E., Sun, Y.H., West, N.P., Williamson, M., Botto, M., Smith, H., and Tang, C.M. 2005. Available carbon source influences the resistance of Neisseria meningitidis against complement. Exp. Med. 201, 1637–1645.

    Article  CAS  Google Scholar 

  • Fair, R.J. and Tor, Y. 2014. Antibiotics and bacterial resistance in the 21st century. Perspect. Medicin. Chem. 6, 25–64.

    Article  Google Scholar 

  • Kwon, D.H. and Lu, C.D. 2007. Polyamine effects on antibiotic susceptibility in bacteria. Antimicrob. Agents Chemother. 51, 2070–2077.

    Article  CAS  Google Scholar 

  • Ofek, I., Whitnack, E., and Beachey, E.H. 1983. Hydrophobic interactions of group A streptococci with hexadecane droplets. J. Bacteriol. 154, 139–145.

    Article  CAS  Google Scholar 

  • Perez-Leal, O. and Merali, S. 2012. Regulation of polyamine metabolism by translational control. Amino Acids 42, 611–617.

    Article  CAS  Google Scholar 

  • Rai, A.N., Thornton, J.A., Stokes, J., Sunesara, I., Swiatlo, E., and Nanduri, B. 2016. Polyamine transporter in Streptococcus pneumoniae is essential for evading early innate immune responses in pneumococcal pneumonia. Sci. Rep. 6, 26964.

    Article  CAS  Google Scholar 

  • Rouphael, N.G. and Stephens, D.S. 2012. Neisseria meningitidis: biology, microbiology, and epidemiology. Methods Mol. Biol. 799, 1–20.

    Article  CAS  Google Scholar 

  • Shah, P. and Swiatlo, E. 2008. A multifaceted role for polyamines in bacterial pathogens. Mol. Microbiol. 68, 4–16.

    Article  CAS  Google Scholar 

  • Sigurlásdóttir, S., Engman, J., Eriksson, O.S., Saroj, S.D., Zguna, N., Lloris-Garcerá, P., Ilag, L.L., and Jonsson, A.B. 2017. Host cell-derived lactate functions as an effector molecule in Neisseria meningitidis microcolony dispersal. PLoS Pathog. 13, e1006251.

    Article  Google Scholar 

  • Sigurlásdóttir, S., Lidberg, K., Zuo, F., Newcombe, J., McFadden, J., and Jonsson, A.B. 2021. Lactate-induced dispersal of Neisseria meningitidis microcolonies is mediated by changes in cell density and pilus retraction and is influenced by temperature change. Infect. Immun. 89, e0029621.

    Article  Google Scholar 

  • Sigurlásdóttir, S., Saroj, S.D., Eriksson, O.S., Eriksson, J., and Jonsson, A.B. 2018. Quantification of Neisseria meningitidis adherence to human epithelial cells by colony counting. Bio Protoc. 8, e2709.

    PubMed  PubMed Central  Google Scholar 

  • Varki, A. 1997. Sialic acids as ligands in recognition phenomena. FASEB J. 11, 248–255.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

PK is supported by the junior research fellowship program of the Symbiosis International (Deemed University). The work was supported by the Ramalingaswami fellowship program of Department of Biotechnology, India under grant BT/RLF/Re-entry/41/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil D. Saroj.

Additional information

Conflict of Interest

The authors report no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanojiya, P., Joshi, R. & Saroj, S.D. Availability of polyamines affects virulence and survival of Neisseria meningitidis. J Microbiol. 60, 640–648 (2022). https://doi.org/10.1007/s12275-022-1589-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-022-1589-y

Keywords

Navigation