Skip to main content
Log in

Activity of Lactobacillus crispatus isolated from vaginal microbiota against Mycobacterium tuberculosis

  • Microbial Pathogenesis and Host-Microbe Interaction
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Tuberculosis, an infectious disease, is caused by Mycobacterium tuberculosis. It remains a significant public health issue around the globe, causing about 1.8 million deaths every year. Drug-resistant M. tuberculosis, including multi-drug-resistant (MDR), extremely-drug-resistant (XDR), and totally drug-resistant (TDR) M. tuberculosis, continues to be a threat to public health. In the case of antibiotic-resistant tuberculosis, the treatment effect of conventional antibiotics is low. Side effects caused by high doses over a long period are causing severe problems. To overcome these problems, there is an urgent need to develop a new anti-tuberculosis drug that is different from the existing compound-based antibiotics. Probiotics are defined as live microorganisms conferring health benefits. They can be potential therapeutic agents in this context as the effectiveness of probiotics against different infectious diseases has been well established. Here, we report that Lactobacillus crispatus PMC201 shows a promising effect on tuberculosis isolated from vaginal fluids of healthy Korean women. Lactobacillus crispatus PMC201 reduced M. tuberculosis H37Rv under co-culture conditions in broth and reduced M. tuberculosis H37Rv and XDR M. tuberculosis in macrophages. Lactobacillus crispatus PMC201 was not toxic to a guinea pig model and did not induce dysbiosis in a human intestinal microbial ecosystem simulator. Taken together, these results indicate that L. crispatus PMC201 can be a promising alternative drug candidate in the current tuberculosis drug regime. Further study is warranted to assess the in vivo efficacy and confirm the mode of action of L. crispatus PMC201.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allué-Guardia, A., García, J.I., and Torrelles, J.B. 2021. Evolution of drug-resistant Mycobacterium tuberculosis strains and their adaptation to the human lung environment. Front. Microbiol. 12, 612675.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Olmos, M.I. and Oberhelman, R.A. 2001. Probiotic agents and infectious diseases: a modern perspective on a traditional therapy. Clin. Infect. Dis. 32, 1567–1576.

    Article  CAS  PubMed  Google Scholar 

  • Asahara, T., Takahashi, A., Yuki, N., Kaji, R., Takahashi, T., and Nomoto, K. 2016. Protective effect of a synbiotic against multidrug- resistant Acinetobacter baumannii in a murine infection model. Antimicrob. Agents Chemother. 60, 3041–3050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aubin, G.G., Bémer, P., Kambarev, S., Patel, N.B., Lemenand, O., Caillon, J., Lawson, P.A., and Corvec, S. 2016. Propionibacterium namnetense sp. nov., isolated from a human bone infection. Int. J. Syst. Evol. Microbiol. 66, 3393–3399.

    Article  CAS  PubMed  Google Scholar 

  • Ayyanna, R., Ankaiah, D., and Arul, V. 2018. Anti-inflammatory and antioxidant properties of probiotic bacterium Lactobacillus mucosae AN1 and Lactobacillus fermentum SNR1 in Wistar albino rats. Front. Microbiol. 9, 3063.

    Article  PubMed  PubMed Central  Google Scholar 

  • Azad, M.A.K., Sarker, M., and Wan, D. 2018. Immunomodulatory effects of probiotics on cytokine profiles. BioMed Res. Int. 2018, 8063647.

    PubMed  PubMed Central  Google Scholar 

  • Bhatia, S.J., Kochar, N., Abraham, P., Nair, N.G., and Mehta, A.P. 1989. Lactobacillus acidophilus inhibits growth of Campylobacter pylori in vitro. J. Clin. Microbiol. 27, 2328–2330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biller, J.A., Katz, A.J., Flores, A.F., Buie, T.M., and Gorbach, S.L. 1995. Treatment of recurrent Clostridium difficile colitis with Lactobacillus GG. J. Pediatr. Gastroenterol. Nutr. 21, 224–226.

    Article  CAS  PubMed  Google Scholar 

  • Bravo, M., Combes, T., Martinez, F.O., Cerrato, R., Rey, J., Garcia-Jimenez, W., Fernandez-Llario, P., Risco, D., and Gutierrez-Merino, J. 2019. Lactobacilli isolated from wild boar (Sus scrofa) antagonize Mycobacterium bovis Bacillus Calmette-Guerin (BCG) in a species-dependent manner. Front. Microbiol. 10, 1663.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cantatore, A., Randall, S.D., Traum, D., and Adams, S.D. 2013. Effect of black tea extract on herpes simplex virus-1 infection of cultured cells. BMC Complement. Altern. Med. 13, 139.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, C.C., Lai, C.C., Huang, H.L., Huang, W.Y., Toh, H.S., Weng, T.C., Chuang, Y.C., Lu, Y.C., and Tang, H.J. 2019. Antimicrobial activity of Lactobacillus species against carbapenem-resistant Enterobacteriaceae. Front. Microbiol. 10, 789.

    Article  PubMed  PubMed Central  Google Scholar 

  • Crouzet, L., Derrien, M., Cherbuy, C., Plancade, S., Foulon, M., Chalin, B., van Hylckama Vlieg, J.E.T., Grompone, G., Rigottier-Gois, L., and Serror, P. 2018. Lactobacillus paracasei CNCM I-3689 reduces vancomycin-resistant Enterococcus persistence and promotes Bacteroidetes resilience in the gut following antibiotic challenge. Sci. Rep. 8, 5098.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Keersmaecker, S.C.J., Verhoeven, T.L.A., Desair, J., Marchal, K., Vanderleyden, J., and Nagy, I. 2006. Strong antimicrobial activity of Lactobacillus rhamnosus GG against Salmonella typhimurium is due to accumulation of lactic acid. FEMS Microbiol. Lett. 259, 89–96.

    Article  PubMed  CAS  Google Scholar 

  • Dey, D.K., Khan, I., and Kang, S.C. 2019. Anti-bacterial susceptibility profiling of Weissella confusa DD_A7 against the multidrugresistant ESBL-positive E. coli. Microb. Pathog. 128, 119–130.

    Article  CAS  PubMed  Google Scholar 

  • Doron, S. and Snydman, D.R. 2015. Risk and safety of probiotics. Clin. Infect. Dis. 60, S129–S134.

    Article  PubMed  PubMed Central  Google Scholar 

  • Edelman, S.M., Lehti, T.A., Kainulainen, V., Antikainen, J., Kylväjä, R., Baumann, M., Westerlund-Wikström, B., and Korhonen, T.K. 2012. Identification of a high-molecular-mass Lactobacillus epithelium adhesin (LEA) of Lactobacillus crispatus ST1 that binds to stratified squamous epithelium. Microbiology 158, 1713–1722.

    Article  CAS  PubMed  Google Scholar 

  • Gavrilova, N.N., Ratnikova, I.A., Sadanov, A.K., Bayakisheva, K., Tourlibaeva, Z.J., and Belikova, O.A. 2014. Application of probiotics in complex treatment of tuberculosis. Int. J. Engineer. Res. Appl. 4, 13–18.

    Google Scholar 

  • Gilchrist, C.A., Turner, S.D., Riley, M.F., Petri, W.A. Jr, and Hewlett, E.L. 2015. Whole-genome sequencing in outbreak analysis. Clin. Microbiol. Rev. 28, 541–563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golden, M.P. and Vikram, H.R. 2005. Extrapulmonary tuberculosis: an overview. Am. Fam. Physician. 72, 1761–1768.

    PubMed  Google Scholar 

  • Goldstein, E.J.C., Tyrrell, K.L., and Citron, D.M. 2015. Lactobacillus species: taxonomic complexity and controversial susceptibilities. Clin. Infect. Dis. 60, S98–S107.

    Article  CAS  PubMed  Google Scholar 

  • Hearps, A.C., Tyssen, D., Srbinovski, D., Bayigga, L., Diaz, D.J.D., Aldunate, M., Cone, R.A., Gugasyan, R., Anderson, D.J., and Tachedjian, G. 2017. Vaginal lactic acid elicits an anti-inflammatory response from human cervicovaginal epithelial cells and inhibits production of pro-inflammatory mediators associated with HIV acquisition. Mucosal Immunol. 10, 1480–1490.

    Article  CAS  PubMed  Google Scholar 

  • Ho, M., Chang, Y.Y., Chang, W.C., Lin, H.C., Wang, M.H., Lin, W.C., and Chiu, T.H. 2016. Oral Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 to reduce Group B Streptococcus colonization in pregnant women: a randomized controlled trial. Taiwan J. Obstet. Gynecol. 55, 515–518.

    Article  PubMed  Google Scholar 

  • Jang, W.S., Kim, S., Podder, B., Jyoti, M.A., Nam, K.W., Lee, B.E., and Song, H.Y. 2015. Anti-mycobacterial activity of tamoxifen against drug-resistant and intra-macrophage Mycobacterium tuberculosis. J. Microbiol. Biotechnol. 25, 946–950.

    Article  CAS  PubMed  Google Scholar 

  • Karska-Wysocki, B., Bazo, M., and Smoragiewicz, W. 2010. Antibacterial activity of Lactobacillus acidophilus and Lactobacillus casei against methicillin-resistant Staphylococcus aureus (MRSA). Microbiol. Res. 165, 674–686.

    Article  PubMed  Google Scholar 

  • Kim, M. and Chun, J. 2014. 16S rRNA gene-based identification of Bacteria and Archaea using the EzTaxon server. In Goodfellow, M., Sutcliffe, I., and Chun, J. (eds.) Methods in Microbiology, vol. 41, pp. 61–74. Academic Press, San Diego, California, USA.

    Article  Google Scholar 

  • Lange, C., Aarnoutse, R.E., Alffenaar, J.W.C., Bothamley, G., Brinkmann, F., Costa, J., Chesov, D., van Crevel, R., Dedicoat, M., Dominguez, J., et al. 2019. Management of patients with multidrugresistant tuberculosis. Int. J. Tuberc. Lung Dis. 23, 645–662.

    Article  CAS  PubMed  Google Scholar 

  • Lange, C., Chesov, D., Heyckendorf, J., Leung, C.C., Udwadia, Z., and Dheda, K. 2018. Drug-resistant tuberculosis: an update on disease burden, diagnosis and treatment. Respirology 23, 656–673.

    Article  PubMed  Google Scholar 

  • Lee, I., Kim, Y.O., Park, S.C., and Chun, J. 2016. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66, 1100–1103.

    Article  CAS  PubMed  Google Scholar 

  • Lenz, J.D., Shirk, K.A., Jolicoeur, A., and Dillard, J.P. 2018. Selective inhibition of Neisseria gonorrhoeae by a dithiazoline in mixed infections with Lactobacillus gasseri. Antimicrob. Agents Chemother. 62, e00826–18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, L., Wang, Q., Wu, X., Qi, H., Das, R., Lin, H., Shi, J., Wang, S., Yang, J., Xue, Y., et al. 2020. Vancomycin exposure caused opportunistic pathogens bloom in intestinal microbiome by simulator of the human intestinal microbial ecosystem (SHIME). Environ. Pollut. 265, 114399.

    Article  CAS  PubMed  Google Scholar 

  • Machairas, N., Pistiki, A., Droggiti, D.I., Georgitsi, M., Pelekanos, N., Damoraki, G., Kouraklis, G., and Giamarellos-Bourboulis, E.J. 2015. Pre-treatment with probiotics prolongs survival after experimental infection by multidrug-resistant Pseudomonas aeruginosa in rodents: an effect on sepsis-induced immunosuppression. Int. J. Antimicrob. Agents 45, 376–384.

    Article  CAS  PubMed  Google Scholar 

  • Mahmud, H.A., Seo, H., Kim, S., Islam, M.I., Nam, K.W., Cho, H.D., and Song, H.Y. 2017. Thymoquinone (TQ) inhibits the replication of intracellular Mycobacterium tuberculosis in macrophages and modulates nitric oxide production. BMC Complement. Altern. Med. 17, 279.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Molly, K., Vande Woestyne, M., and Verstraete, W. 1993. Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl. Microbiol. Biotechnol. 39, 254–258.

    Article  CAS  PubMed  Google Scholar 

  • Molly, K., Woestyne, M.V., Smet, I.D., and Verstraete, W. 1994. Validation of the simulator of the human intestinal microbial ecosystem (SHIME) reactor using microorganism-associated activities. Microb. Ecol. Health Dis. 7, 191–200.

    Google Scholar 

  • Nader de Macías, M.E., Apella, M.C., Romero, N.C., González, S.N., and Oliver, G. 1992. Inhibition of Shigella sonnei by Lactobacillus casei and Lact. acidophilus. J. Appl. Bacteriol. 73, 407–411.

    Article  PubMed  Google Scholar 

  • Ojala, T., Kuparinen, V., Koskinen, J.P., Alatalo, E., Holm, L., Auvinen, P., Edelman, S., Westerlund-Wikström, B., Korhonen, T.K., Paulin, L., et al. 2010. Genome sequence of Lactobacillus crispatus ST1. J. Bacteriol. 192, 3547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Racedo, S., Villena, J., Medina, M., Agüero, G., Rodríguez, V., and Alvarez, S. 2006. Lactobacillus casei administration reduces lung injuries in a Streptococcus pneumoniae infection in mice. Microbes Infect. 8, 2359–2366.

    Article  PubMed  Google Scholar 

  • Rezvani, M., Mendoza, M., Koci, M.D., Daron, C., Levy, J., and Hassan, H.M. 2016. Draft genome sequence of Lactobacillus crispatus C25 isolated from chicken cecum. Genome Announc. 4, e01223–16.

    PubMed  PubMed Central  Google Scholar 

  • Sharma, R., Patel, S., Abboud, C., Diep, J., Ly, N.S., Pogue, J.M., Kaye, K.S., Li, J., and Rao, G.G. 2017. Polymyxin B in combination with meropenem against carbapenemase-producing Klebsiella pneumoniae: pharmacodynamics and morphological changes. Int. J. Antimicrob. Agents 49, 224–232.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, D., Sharma, S., and Sharma, J. 2020. Potential strategies for the management of drug-resistant tuberculosis. J. Glob. Antimicrob. Resist. 22, 210–214.

    Article  PubMed  Google Scholar 

  • Sivieri, K., Morales, M.L.V., Adorno, M.A.T., Sakamoto, I.K., Saad, S.M.I., and Rossi, E.A. 2013. Lactobacillus acidophilus CRL 1014 improved “gut health” in the SHIME....reactor. BMC Gastroenterology 13, 100.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stojanov, S., Berlec, A., and Štrukelj, B. 2020. The influence of probiotics on the Firmicutes/Bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms 8, 1715.

    Article  CAS  PubMed Central  Google Scholar 

  • Strus, M., Kucharska, A., Kukla, G., Brzychczy-Wloch, M., Maresz, K., and Heczko, P.B. 2005. The in vitro activity of vaginal Lactobacillus with probiotic properties against Candida. Infect. Dis. Obstet. Gynecol. 13, 69–75.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tatusov, R.L., Galperin, M.Y., Natale, D.A., and Koonin, E.V. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner, R.D. and Bothamley, G.H. 2015. Cough and the transmission of tuberculosis. J. Infect. Dis. 211, 1367–1372.

    Article  PubMed  Google Scholar 

  • Weichert, S., Schroten, H., and Adam, R. 2012. The role of prebiotics and probiotics in prevention and treatment of childhood infectious diseases. Pediatr. Infect. Dis. J. 31, 859–862.

    Article  PubMed  Google Scholar 

  • Weiss, G. and Schaible, U.E. 2015. Macrophage defense mechanisms against intracellular bacteria. Immunol. Rev. 264, 182–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO, World Health Organization. 2020. Global tuberculosis report 2020. Released on 14 October 2020.

  • Williams, N.T. 2010. Probiotics. Am. J. Health Syst. Pharm. 67, 449–458.

    Article  CAS  PubMed  Google Scholar 

  • Wipperman, M.F., Fitzgerald, D.W., Juste, M.A.J., Taur, Y., Namasivayam, S., Sher, A., Bean, J.M., Bucci, V., and Glickman, M.S. 2017. Antibiotic treatment for Tuberculosis induces a profound dysbiosis of the microbiome that persists long after therapy is completed. Sci. Rep. 7, 10767.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang, T.W., Park, H.O., Jang, H.N., Yang, J.H., Kim, S.H., Moon, S.H., Byun, J.H., Lee, C.E., Kim, J.W., and Kang, D.H. 2017. Side effects associated with the treatment of multidrug-resistant tuberculosis at a tuberculosis referral hospital in South Korea: a retrospective study. Medicine 96, e7482.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zerin, T., Lee, M., Jang, W.S., Nam, K.W., and Song, H.Y. 2015. Ursolic acid reduces Mycobacterium tuberculosis-induced nitric oxide release in human alveolar A549 cells. Mol. Cells 38, 610–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by the Ministry of Trade, Industry and Energy (MOTIE), Korea, under the’ Regional Industry-Based Organization Support Program ‘(reference number P0001942) supervised by the Korea Institute for Advancement of Technology (KIAT). This research was also supported by Soonchunhyang University Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho-Yeon Song.

Ethics declarations

Female vaginal fluid sampling was conducted in the obstetrics and gynecology department at Soonchunhyang University Cheonan Hospital under the Soonchunhyang University Cheonan Hospital (eIRB) Ethics Committee (IRB No. 2019- 10-017-005).

The experiment using M. tuberculosis was conducted at Soonchunhyang University Animal Biosafety Level 3 Laboratory (ABSL-3, KDCA-20-3-04).

Following the drug safety evaluation test guidelines provided by the Ministry of Food and Drug Safety (Notice No. 2015-82), this experiment was performed at Soonchunhyang University ABSL-2 facility (LML 20-591). The animal study protocol was reviewed and approved by Soonchunhyang Institutional Animal Care and Use Committee (IACUC) (Approval number: SCH21-0017).

The fecal sample SHIME experimental method was reviewed and approved by the ethical committee of Soonchunhyang University Bucheon Hospital, Korea (IRB No. 2021-03-012-001).

Additional information

Conflict of Interest

The authors have no conflicts of interest relevant to this study to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y., Seo, H., Kim, S. et al. Activity of Lactobacillus crispatus isolated from vaginal microbiota against Mycobacterium tuberculosis. J Microbiol. 59, 1019–1030 (2021). https://doi.org/10.1007/s12275-021-1332-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-021-1332-0

Keywords

Navigation