Skip to main content
Log in

Overview of bioinformatic methods for analysis of antibiotic resistome from genome and metagenome data

  • Review
  • Omics in Microbial Ecology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Whole genome and metagenome sequencing are powerful approaches that enable comprehensive cataloging and profiling of antibiotic resistance genes at scales ranging from a single clinical isolate to ecosystems. Recent studies deal with genomic and metagenomic data sets at larger scales; therefore, designing computational workflows that provide high efficiency and accuracy is becoming more important. In this review, we summarize the computational workflows used in the research field of antibiotic resistome based on genome or metagenome sequencing. We introduce workflows, software tools, and data resources that have been successfully employed in this rapidly developing field. The workflow described in this review can be used to list the known antibiotic resistance genes from genomes and metagenomes, quantitatively profile them, and investigate the epidemiological and evolutionary contexts behind their emergence and transmission. We also discuss how novel antibiotic resistance genes can be discovered and how the association between the resistome and mobilome can be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcock, B.P., Raphenya, A.R., Lau, T.T.Y., Tsang, K.K., Bouchard, M., Edalatmand, A., Huynh, W., Nguyen, A.L.V., Cheng, A.A., Liu, S., et al. 2019. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 48, D517–D525.

    PubMed Central  Google Scholar 

  • Angiuoli, S.V. and Salzberg, S.L. 2011. Mugsy: fast multiple alignment of closely related whole genomes. Bioinformatics 27, 334–342.

    Article  CAS  PubMed  Google Scholar 

  • Antonopoulos, D.A., Assaf, R., Aziz, R.K., Brettin, T., Bun, C., Conrad, N., Davis, J.J., Dietrich, E.M., Disz, T., Gerdes, S., et al. 2019. PATRIC as a unique resource for studying antimicrobial resistance. Brief. Bioinform. 20, 1094–1102.

    Article  CAS  PubMed  Google Scholar 

  • Arango-Argoty, G., Garner, E., Pruden, A., Heath, L.S., Vikesland, P., and Zhang, L. 2018. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome 6, 23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayliss, S.C., Thorpe, H.A., Coyle, N.M., Sheppard, S.K., and Feil, E.J. 2019. PIRATE: A fast and scalable pangenomics toolbox for clustering diverged orthologues in bacteria. GigaScience 8, giz119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beghini, F., McIver, L.J., Blanco-Míguez, A., Dubois, L., Asnicar, F., Maharjan, S., Mailyan, A., Thomas, A.M., Manghi, P., Valles-Colomer, M., et al. 2020. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bio-Bakery 3. bioRxiv. doi: https://doi.org/10.1101/2020.11.19.388223

  • Berglund, F., Böhm, M.E., Martinsson, A., Ebmeyer, S., Österlund, T., Johnning, A., Larsson, D.G.J., and Kristiansson, E. 2020. Comprehensive screening of genomic and metagenomic data reveals a large diversity of tetracycline resistance genes. Microb. Genom. 6, mgen000455.

    Google Scholar 

  • Berglund, F., Österlund, T., Boulund, F., Marathe, N.P., Larsson, D.G.J., and Kristiansson, E. 2019. Identification and reconstruction of novel antibiotic resistance genes from metagenomes. Microbiome 7, 52.

    Article  PubMed  PubMed Central  Google Scholar 

  • Böhm, M.E., Razavi, M., Marathe, N.P., Flach, C.F., and Larsson, D.G.J. 2020. Discovery of a novel integron-borne aminoglycoside resistance gene present in clinical pathogens by screening environmental bacterial communities. Microbiome 8, 41.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bortolaia, V., Kaas, R.S., Ruppe, E., Roberts, M.C., Schwarz, S., Cattoir, V., Philippon, A., Allesoe, R.L., Rebelo, A.R., Florensa, A.F., et al. 2020. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 75, 3491–3500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.H., Xie, D., Suchard, M.A., Rambaut, A., and Drummond, A.J. 2014. BEAST 2: a software platform for bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bradley, P., Gordon, N.C., Walker, T.M., Dunn, L., Heys, S., Huang, B., Earle, S., Pankhurst, L.J., Anson, L., de Cesare, M., et al. 2015. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat. Commun. 6, 10063.

    Article  CAS  PubMed  Google Scholar 

  • Břinda, K., Callendrello, A., Ma, K.C., MacFadden, D.R., Charalampous, T., Lee, R.S., Cowley, L., Wadsworth, C.B., Grad, Y.H., Kucherov, G., et al. 2020. Rapid inference of antibiotic resistance and susceptibility by genomic neighbour typing. Nat. Microbiol. 5, 455–464.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brito, I.L., Yilmaz, S., Huang, K., Xu, L., Jupiter, S.D., Jenkins, A.P., Naisilisili, W., Tamminen, M., Smillie, C.S., Wortman, J.R., et al. 2016. Mobile genes in the human microbiome are structured from global to individual scales. Nature 535, 435–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, C.T., Moritz, D., O’Brien, M.P., Reidl, F., Reiter, T., and Sullivan, B.D. 2020. Exploring neighborhoods in large metagenome assembly graphs using spacegraphcats reveals hidden sequence diversity. Genome Biol. 21, 164.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buchfink, B., Xie, C., and Huson, D.H. 2015. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60.

    Article  CAS  PubMed  Google Scholar 

  • Campbell, T.P., Sun, X., Patel, V.H., Sanz, C., Morgan, D., and Dantas, G. 2020. The microbiome and resistome of chimpanzees, gorillas, and humans across host lifestyle and geography. ISME J. 14, 1584–1599.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaumeil, P.A., Mussig, A.J., Hugenholtz, P., and Parks, D.H. 2019. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927.

    PubMed Central  Google Scholar 

  • Chen, S., Zhou, Y., Chen, Y., and Gu, J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cohen, K.A., Manson, A.L., Desjardins, C.A., Abeel, T., and Earl, A.M. 2019. Deciphering drug resistance in Mycobacterium tuberculosis using whole-genome sequencing: progress, promise, and challenges. Genome Med. 11, 45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Croucher, N.J., Page, A.J., Connor, T.R., Delaney, A.J., Keane, J.A., Bentley, S.D., Parkhill, J., and Harris, S.R. 2015. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 43, e15.

    Article  PubMed  CAS  Google Scholar 

  • Darling, A.E., Mau, B., and Perna, N.T. 2010. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5, e11147.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Didelot, X., Croucher, N.J., Bentley, S.D., Harris, S.R., and Wilson, D.J. 2018. Bayesian inference of ancestral dates on bacterial phylogenetic trees. Nucleic Acids Res. 46, e134.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Didelot, X., Fraser, C., Gardy, J., and Colijn, C. 2017. Genomic infectious disease epidemiology in partially sampled and ongoing outbreaks. Mol. Biol. Evol. 34, 997–1007.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle, R.M., O’Sullivan, D.M., Aller, S.D., Bruchmann, S., Clark, T., Coello Pelegrin, A., Cormican, M., Diez Benavente, E., Ellington, M.J., McGrath, E., et al. 2020. Discordant bioinformatic predictions of antimicrobial resistance from whole-genome sequencing data of bacterial isolates: an inter-laboratory study. Microb. Genom. 6, e000335.

    PubMed Central  Google Scholar 

  • Ellington, M.J., Ekelund, O., Aarestrup, F.M., Canton, R., Doumith, M., Giske, C., Grundman, H., Hasman, H., Holden, M.T.G., Hopkins, K.L., et al. 2017. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee. Clin. Microbiol. Infect. 23, 2–22.

    Article  CAS  PubMed  Google Scholar 

  • Feldgarden, M., Brover, V., Haft, D.H., Prasad, A.B., Slotta, D.J., Tolstoy, I., Tyson, G.H., Zhao, S., Hsu, C.H., McDermott, P.F., et al. 2019. Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob. Agents Chemother. 63, e00483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasparrini, A.J., Wang, B., Sun, X., Kennedy, E.A., Hernandez-Leyva, A., Ndao, I.M., Tarr, P.I., Warner, B.B., and Dantas, G. 2019. Persistent metagenomic signatures of early-life hospitalization and antibiotic treatment in the infant gut microbiota and resistome. Nat. Microbiol. 4, 2285–2297.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghaly, T.M., Geoghegan, J.L., Alroy, J., and Gillings, M.R. 2019. High diversity and rapid spatial turnover of integron gene cassettes in soil. Environ. Microbiol. 21, 1567–1574.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, S.K., Padmanabhan, B.R., Diene, S.M., Lopez-Rojas, R., Kempf, M., Landraud, L., and Rolain, J.M. 2014. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents Chemother. 58, 212–220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joensen, K.G., Tetzschner, A.M.M., Iguchi, A., Aarestrup, F.M., and Scheutz, F. 2015. Rapid and easy in silico serotyping of Escherichia coli isolates by use of whole-genome sequencing data. J. Clin. Microbiol. 53, 2410–2426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jolley, K.A., Bray, J.E., and Maiden, M.C.J. 2018. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 3, 124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kent, A.G., Vill, A.C., Shi, Q., Satlin, M.J., and Brito, I.L. 2020. Widespread transfer of mobile antibiotic resistance genes within individual gut microbiomes revealed through bacterial Hi-C. Nat. Commun. 11, 4379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J., Greenberg, D.E., Pifer, R., Jiang, S., Xiao, G., Shelburne, S.A., Koh, A., Xie, Y., and Zhan, X. 2020. VAMPr: VAriant Mapping and Prediction of antibiotic resistance via explainable features and machine learning. PLoS Comput. Biol. 16, e1007511.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim, D., Song, L., Breitwieser, F.P., and Salzberg, S.L. 2016. Centrifuge: Rapid and sensitive classification of metagenomic sequences. Genome Res. 26, 1721–1729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolmogorov, M., Bickhart, D.M., Behsaz, B., Gurevich, A., Rayko, M., Shin, S.B., Kuhn, K., Yuan, J., Polevikov, E., Smith, T.P.L., et al. 2020. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat. Methods 17, 1103–1110.

    Article  CAS  PubMed  Google Scholar 

  • Kolmogorov, M., Yuan, J., Lin, Y., and Pevzner, P.A. 2019. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546.

    Article  CAS  PubMed  Google Scholar 

  • Kothari, A., Wu, Y.W., Chandonia, J.M., Charrier, M., Rajeev, L., Rocha, A.M., Joyner, D.C., Hazen, T.C., Singer, S.W., and Mukhopadhyay, A. 2019. Large circular plasmids from groundwater plasmidomes span multiple incompatibility groups and are enriched in multimetal resistance genes. mBio 10, e02899–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, K., Kim, D.W., Lee, D.H., Kim, Y.S., Bu, J.H., Cha, J.H., Thawng, C.N., Hwang, E.M., Seong, H.J., Sul, W.J., et al. 2020. Mobile resistome of human gut and pathogen drives anthropogenic bloom of antibiotic resistance. Microbiome 8, 2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lees, J.A., Harris, S.R., Tonkin-Hill, G., Gladstone, R.A., Lo, S.W., Weiser, J.N., Corander, J., Bentley, S.D., and Croucher, N.J. 2019. Fast and flexible bacterial genomic epidemiology with PopPUNK. Genome Res. 29, 304–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, D., Liu, C.M., Luo, R., Sadakane, K., and Lam, T.W. 2015. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676.

    Article  CAS  PubMed  Google Scholar 

  • Liu, M., Li, X., Xie, Y., Bi, D., Sun, J., Li, J., Tai, C., Deng, Z., and Ou, H.Y. 2019. ICEberg 2.0: An updated database of bacterial integrative and conjugative elements. Nucleic Acids Res. 47, D660–D665.

    Article  CAS  PubMed  Google Scholar 

  • MacFadden, D.R., Coburn, B., Břinda, K., Corbeil, A., Daneman, N., Fisman, D., Lee, R.S., Lipsitch, M., McGeer, A., Melano, R.G., et al. 2020. Using genetic distance from archived samples for the prediction of antibiotic resistance in Escherichia coli. Antimicrob. Agents Chemother. 64, e02417–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahé, P. and Tournoud, M. 2018. Predicting bacterial resistance from whole-genome sequences using k-mers and stability selection. BMC Bioinformatics 19, 383.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marçais, G., Delcher, A.L., Phillippy, A.M., Coston, R., Salzberg, S.L., and Zimin, A. 2018. MUMmer4: A fast and versatile genome alignment system. PLoS Comput. Biol. 14, e1005944.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marttinen, P., Hanage, W.P., Croucher, N.J., Connor, T.R., Harris, S.R., Bentley, S.D., and Corander, J. 2012. Detection of recombination events in bacterial genomes from large population samples. Nucleic Acids Res. 40, e6.

    Article  CAS  PubMed  Google Scholar 

  • Meier-Kolthoff, J.P. and Göker, M. 2019. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 10, 2182.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., von Haeseler, A., and Lanfear, R. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munck, C., Sheth, R.U., Freedberg, D.E., and Wang, H.H. 2020. Recording mobile DNA in the gut microbiota using an Escherichia coli CRISPR-Cas spacer acquisition platform. Nat. Commun. 11, 95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen, M., Long, S.W., McDermott, P.F., Olsen, R.J., Olson, R., Stevens, R.L., Tyson, G.H., Zhao, S., and Davis, J.J. 2019. Using machine learning to predict antimicrobial MICs and associated genomic features for nontyphoidal Salmonella. J. Clin. Microbiol. 57, e01260.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nurk, S., Meleshko, D., Korobeynikov, A., and Pevzner, P.A. 2017. metaSPAdes: A new versatile metagenomic assembler. Genome Res. 27, 824–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olekhnovich, E.I., Vasilyev, A.T., Ulyantsev, V.I., Kostryukova, E.S., and Tyakht, A.V. 2018. MetaCherchant: analyzing genomic context of antibiotic resistance genes in gut microbiota. Bioinformatics 34, 434–444.

    Article  CAS  PubMed  Google Scholar 

  • Oliveira, P.H., Touchon, M., Cury, J., and Rocha, E.P.C. 2017. The chromosomal organization of horizontal gene transfer in bacteria. Nat. Commun. 8, 841.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ondov, B.D., Treangen, T.J., Melsted, P., Mallonee, A.B., Bergman, N.H., Koren, S., and Phillippy, A.M. 2016. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 17, 132.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Page, A.J., Cummins, C.A., Hunt, M., Wong, V.K., Reuter, S., Holden, M.T., Fookes, M., Falush, D., Keane, J.A., and Parkhill, J. 2015. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Page, A.J., Taylor, B., and Keane, J.A. 2016. Multilocus sequence typing by blast from de novo assemblies against PubMLST. J. Open Source Softw. 1, 118.

    Article  Google Scholar 

  • Parks, D.H., Chuvochina, M., Waite, D.W., Rinke, C., Skarshewski, A., Chaumeil, P.A., and Hugenholtz, P. 2018. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Sepulveda, B.M., Heavens, D., Pulford, C.V., Predeus, A.V., Low, R., Webster, H., Schudoma, C., Rowe, W., Lipscombe, J., Watkins, C., et al. 2020. An accessible, efficient and global approach for the large-scale sequencing of bacterial genomes. bioRxiv 200840. doi: https://doi.org/10.1101/2020.07.22.200840.

  • Price, M.N., Dehal, P.S., and Arkin, A.P. 2010. FastTree 2 — approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robertson, J. and Nash, J.H.E. 2018. MOB-suite: software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb. Genom. 4, e000206.

    PubMed Central  Google Scholar 

  • Ruppé, E., Ghozlane, A., Tap, J., Pons, N., Alvarez, A.S., Maziers, N., Cuesta, T., Hernando-Amado, S., Clares, I., Martínez, J.L., et al. 2019. Prediction of the intestinal resistome by a three-dimensional structure-based method. Nat. Microbiol. 4, 112–123.

    Article  PubMed  CAS  Google Scholar 

  • Sayers, E.W., Beck, J., Brister, J.R., Bolton, E.E., Canese, K., Comeau, D.C., Funk, K., Ketter, A., Kim, S., Kimchi, A., et al. 2020. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 48, D9–D16.

    Article  CAS  PubMed  Google Scholar 

  • Schwengers, O., Barth, P., Falgenhauer, L., Hain, T., Chakraborty, T., and Goesmann, A. 2020. Platon: identification and characterization of bacterial plasmid contigs in short-read draft assemblies exploiting protein sequence-based replicon distribution scores. Microb. Genom. 6, mgen000398.

    Google Scholar 

  • Segerman, B. 2020. The most frequently used sequencing technologies and assembly methods in different time segments of the bacterial surveillance and RefSeq genome databases. Front. Cell. Infect. Microbiol. 10, 527102.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheppard, A.E., Stoesser, N., Wilson, D.J., Sebra, R., Kasarskis, A., Anson, L.W., Giess, A., Pankhurst, L.J., Vaughan, A., Grim, C.J., et al. 2016. Nested Russian doll-like genetic mobility drives rapid dissemination of the carbapenem resistance gene blaKPC. Antimicrob. Agents Chemother. 60, 3767–3778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, W., Sun, Q., Fan, G., Hideaki, S., Moriya, O., Itoh, T., Zhou, Y., Cai, M., Kim, S.G., Lee, J.S., et al. 2020. gcType: a high-quality type strain genome database for microbial phylogenetic and functional research. Nucleic Acids Res. 49, D694–D705.

    Article  PubMed Central  Google Scholar 

  • Smillie, C.S., Smith, M.B., Friedman, J., Cordero, O.X., David, L.A., and Alm, E.J. 2011. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480, 241–244.

    Article  CAS  PubMed  Google Scholar 

  • Spencer, S.J., Tamminen, M.V., Preheim, S.P., Guo, M.T., Briggs, A.W., Brito, I.L., Weitz, D.A., Pitkänen, L.K., Vigneault, F., Virta, M.P.J., et al. 2016. Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers. ISME J. 10, 427–436.

    Article  CAS  PubMed  Google Scholar 

  • Steinegger, M., Mirdita, M., and Söding, J. 2019. Protein-level assembly increases protein sequence recovery from metagenomic samples manyfold. Nat. Methods 16, 603–606.

    Article  CAS  PubMed  Google Scholar 

  • Steinegger, M. and Söding, J. 2017. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028.

    Article  CAS  PubMed  Google Scholar 

  • Treangen, T.J., Ondov, B.D., Koren, S., and Phillippy, A.M. 2014. The harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 15, 524.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Camp, P.J., Haslam, D.B., and Porollo, A. 2020. Prediction of antimicrobial resistance in Gram-negative bacteria from whole-genome sequencing data. Front. Microbiol. 11, 1013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallace, J.C., Port, J.A., Smith, M.N., and Faustman, E.M. 2017. FARME DB: a functional antibiotic resistance element database. Database 2017, baw165.

    Article  PubMed Central  CAS  Google Scholar 

  • Wang, R., van Dorp, L., Shaw, L.P., Bradley, P., Wang, Q., Wang, X., Jin, L., Zhang, Q., Liu, Y., Rieux, A., et al. 2018. The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat. Commun. 9, 1179.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wick, R.R., Heinz, E., Holt, K.E., and Wyres, K.L. 2018. Kaptive Web: user-friendly capsule and lipopolysaccharide serotype prediction for Klebsiella genomes. J. Clin. Microbiol. 56, e00197–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wick, R.R. and Holt, K.E. 2020. Benchmarking of long-read assemblers for prokaryote whole genome sequencing. F1000Res. 8, 2138.

    Article  Google Scholar 

  • Wood, D.E., Lu, J., and Langmead, B. 2019. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, Z. and Tang, H. 2017. ISEScan: automated identification of insertion sequence elements in prokaryotic genomes. Bioinformatics 33, 3340–3347.

    Article  CAS  PubMed  Google Scholar 

  • Yin, X., Jiang, X.T., Chai, B., Li, L., Yang, Y., Cole, J.R., Tiedje, J.M., and Zhang, T. 2018. ARGs-OAP v2.0 with an expanded SARG database and Hidden Markov Models for enhancement characterization and quantification of antibiotic resistance genes in environmental metagenomes. Bioinformatics 34, 2263–2270.

    Article  CAS  PubMed  Google Scholar 

  • Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida, C.E., Kruczkiewicz, P., Laing, C.R., Lingohr, E.J., Gannon, V.P.J., Nash, J.H.E., and Taboada, E.N. 2016. The Salmonella in silico typing resource (SISTR): an open web-accessible tool for rapidly typing and subtyping draft Salmonella genome assemblies. PLoS ONE 11, e0147101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan, Q.B., Huang, Y.M., Wu, W.B., Zuo, P., Hu, N., Zhou, Y.Z., and Alvarez, P.J.J. 2019. Redistribution of intracellular and extracellular free & adsorbed antibiotic resistance genes through a wastewater treatment plant by an enhanced extracellular DNA extraction method with magnetic beads. Environ. Int. 131, 104986.

    Article  CAS  PubMed  Google Scholar 

  • Zankari, E., Allesøe, R., Joensen, K.G., Cavaco, L.M., Lund, O., and Aarestrup, F.M. 2017. PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J. Antimicrob. Chemother. 72, 2764–2768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, A.N., Li, L.G., Ma, L., Gillings, M.R., Tiedje, J.M., and Zhang, T. 2018. Conserved phylogenetic distribution and limited antibiotic resistance of class 1 integrons revealed by assessing the bacterial genome and plasmid collection. Microbiome 6, 130.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou, Z., Alikhan, N.F., Mohamed, K., Fan, Y., Agama Study Group, and Achtman, M. 2019. The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res. 30, 138–152.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Ministry of Environment (MOE) as “the Environmental Health Action Program (2016001350004)” and by the “Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ015130032020)” Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Jun Cha.

Additional information

Conflict of Interest

The authors declare that they have no conflict of interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K., Kim, DW. & Cha, CJ. Overview of bioinformatic methods for analysis of antibiotic resistome from genome and metagenome data. J Microbiol. 59, 270–280 (2021). https://doi.org/10.1007/s12275-021-0652-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-021-0652-4

Keywords

Navigation