Skip to main content

Advertisement

Log in

Detection of colistin-resistant populations prior to antibiotic exposure in KPC-2-producing Klebsiella pneumoniae clinical isolates

  • Microbial Pathogenesis and Host-Microbe Interaction
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Although colistin is frequently regarded as the antibiotic of last resort in treating carbapenem-resistant Klebsiella pneumoniae, colistin heteroresistance may in part be associated with antibiotic treatment failure. However, we do not know how widespread the colistin heteroresistance is in carbapenem-resistant K. pneumoniae isolates. In this study, we performed colistin disc diffusion assays, E-tests, and population analysis profiling for KPC-2-producing K. pneumoniae isolates to identify colistin heteroresistance. Although no colistin-resistant colonies were detected by the disc diffusion test and E-test, a colistin-resistant subpopulation was identified in population analysis profiling in all colistin-susceptible, KPC-2-producing K. pneumoniae isolates. Colistin-resistant subpopulations were also identified even when isolates had no colistin exposure. The ratio of colistin-resistant subpopulations to the total population increased as the exposure concentration of colistin increased. In in vitro time-kill assays, regrowth was observed in all isolates after 2 h upon exposure to colistin. We identified common amino acid alterations in PhoQ, PhoP, and PmrB in colistin-resistant subpopulations from some isolates, but no substitutions were found in most resistant subpopulations from other isolates. In all colistin-resistant subpopulations, overexpression of PhoQ and PbgP was observed. In this study, we demonstrated that colistin heteroresistance may be common in KPC-2-producing K. pneumoniae isolates, which could not be detected in the disc diffusion method and E-test. Colistin heteroresistance may cause colistin treatment failure in part and may evolve into resistance. Thus, development of more reliable diagnostic methods is required to detect colistin heteroresistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson, D.I., Nicoloff, H., and Hjort, K. 2019. Mechanisms and clinical relevance of bacterial heteroresistance. Nat. Rev. Microbiol. 17, 479–496.

    Article  CAS  PubMed  Google Scholar 

  • Band, V.I., Satola, S.W., Burd, E.M., Farley, M.M., Jacob, J.T., and Weiss, D.S. 2018. Carbapenem-resistant Klebsiella pneumoniae exhibiting clinically undetected colistin heteroresistance leads to treatment failure in a murine model of infection. mBio 9, e02448–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bardet, L., Baron, S., Leangapichart, T., Okdah, L., Diene, S.M., and Rolain, J.M. 2017. Deciphering heteroresistance to colistin in a Klebsiella pneumoniae isolate from Marseille, France. Antimicrob. Agents Chemother. 61, e00356–17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheong, H.S., Kim, S.Y., Wi, Y.M., Peck, K.R., and Ko, K.S. 2019. Colistin heteroresistance in Klebsiella pneumoniae isolates and diverse mutations of PmrAB and PhoPQ in resistant subpopulations. J. Clin. Med. 8, 1444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, M.J., Kim, S.J., and Ko, K.S. 2016. Pathways regulating the pbgP operon and colistin resistance in Klebsiella pneumoniae strains. J. Microbiol. Biotechnol. 26, 1620–1628.

    Article  CAS  PubMed  Google Scholar 

  • Clinical and Laboratory Standards Institute (CLSI). 2019. M100 Performance Standards for Antimicrobial Susceptibility Testing. 29th edn. CLSI supplement. Clinical and Laboratory Standards Institute, Wayne, Pennsylvania, USA.

    Google Scholar 

  • Diancourt, L., Passet, V., Verhoef, J., Grimont, P.A.D., and Brisse, S. 2005. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J. Clin. Microbiol. 43, 4178–4182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Halfawy, O.M. and Valvano, M.A. 2015. Antimicrobial heteroresistance: an emerging field in need of clarity. Clin. Microbiol. Rev. 28, 191–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • European Committee on Antimicrobial Susceptibility Testing (EUCAST). 2020. Breakpoint tables for interpretation of MICs and zone diameters, version 10.0. https://eucast.org/clinical_breakpoints/.

  • Halaby, T., Kucukkose, E., Janssen, A.B., Rogers, M.R., Doorduijn, D.J., van der Zanden, A.G., Al Naiemi, N., Vandenbroucke-Grauls, C.M., and van Schaik, W. 2016. Genomic characterization of colistin heteroresistance in Klebsiella pneumoniae during a nosocomial outbreak. Antimicrob. Agents Chemother. 60, 6837–6843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong, Y.K., Kim, H., and Ko, K.S. 2020. Two types of colistin heteroresistance in Acinetobacter baumannii isolates. Emerg. Microb. Infect. 9, 2114–2123.

    Article  CAS  Google Scholar 

  • Kim, S.Y., Choi, H.J., and Ko, K.S. 2014. Differential expression of two-component systems, pmrAB and phoPQ, with different growth phases of Klebsiella pneumoniae in the presence or absence of colistin. Curr. Microbiol. 69, 37–41.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S.J. and Ko, K.S. 2018. Diverse genetic alterations responsible for post-exposure colistin resistance in populations of the same strain of Klebsiella pneumoniae. Int. J. Antimicrob. Agents 52, 425–429.

    Article  CAS  PubMed  Google Scholar 

  • Landman, D., Georgescu, C., Martin, D.A., and Quale, J. 2008. Polymyxins revisited. Clin. Microbiol. Rev. 21, 449–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, C.R., Lee, J.H., Park, K.S., Kim, Y.B., Jeong, B.C., and Lee, S.H. 2016. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: epidemiology, genetic context, treatment options, and detection methods. Front. Microbiol. 7, 895.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leung, L.M., Cooper, V.S., Rasko, D.A., Guo, Q., Pacey, M.P., McElheny, C.L., Mettus, R.T., Yoon, S.H., Goodlett, D.R., Ernst, R.K., et al. 2017. Structural modification of LPS in colistin-resistant, KPC-producing Klebsiella pneumoniae. J. Antimicrob. Chemother. 72, 3035–3042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, B., Zhao, Y., Liu, C., Chen, Z., and Zhou, D. 2014. Molecular pathogenesis of Klebsiella pneumoniae. Future Microbiol. 9, 1071–1081.

    Article  PubMed  Google Scholar 

  • Liu, Y.Y., Wang, Y., Walsh, T.R., Yi, L.X., Zhang, R., Spencer, J., Doi, Y., Tian, G., Dong, B., Huang, X., et al. 2016. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16, 161–168.

    Article  PubMed  Google Scholar 

  • Monaco, M., Giani, T., Raffone, M., Arena, F., Garcia-Fernandez, A., Pollini, S., Network EuSCAPE-Italy, Grandmann, H., Pantosti, A., and Rossolini, G.M. 2014. Colistin resistance superimposed to endemic carbapenem-resistant Klebsiella pneumoniae: a rapidly evolving problem in Italy, November 2013 to April 2014. Euro Surveill. 19, 20939.

    Article  PubMed  Google Scholar 

  • Okazaki, A. and Avison, M.B. 2008. Induction of L1 and L2 β-lactamase production in Stenotrophomonas maltophilia is dependent on an AmpR-type regulator. Antimicrob. Agents Chemother. 52, 1525–1528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paczosa, M.K. and Mecsas, J. 2016. Klebsiella pneumoniae: Going on the offense with a strong defense. Microbiol. Mol. Biol. Rev. 80, 629–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poirel, L., Walsh, T.R., Cuvillier, V., and Nordmann, P. 2011. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 70, 119–123.

    Article  CAS  PubMed  Google Scholar 

  • Rhee, J.Y., Park, Y.K., Shin, J.Y., Choi, J.Y., Lee, M.Y., Peck, K.R., Song, J.H., and Ko, K.S. 2010. KPC-producing extreme drug-resistant Klebsiella pneumoniae isolate from a patient with diabetes mellitus and chronic renal failure on hemodialysis in South Korea. Antimicrob. Agents Chemother. 54, 2278–2279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shon, A.S., Bajwa, R.P., and Russo, T.A. 2013. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence 4, 107–118.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan, K., Nguyen, J., Nguyen, K., Huse, H.K., Nieberg, P.H., and Wong-Beringer, A. 2020. Prevalence of the carbapenem-heteroresistant phenotype among ESBL-producing Escherichia coli and Klebsiella pneumoniae clinical isolates. J. Antimicrob. Chemother. 75, 1506–1512.

    CAS  PubMed  Google Scholar 

  • Weterings, V., Zhou, K., Rossen, J.W., van Stenis, D., Thewessen, E., Kluytmans, J., and Veenemans, J. 2015. An outbreak of colistin-resistant Klebsiella pneumonae in the Netherlands (July to December 2013), with inter-institutional spread. Eur. J. Clin. Microbiol. Infect. Dis. 34, 1647–1655.

    Article  CAS  PubMed  Google Scholar 

  • Wozniak, J.E., Band, V.I., Conley, A.B., Rishishwar, L., Burd, E.M., Satola, S.W., Hardy, D.J., Tsay, R., Farley, M.M., Jacob, J.T., et al. 2019. A nationwide screen of carbapenem-resistant Klebsiella pneumoniae reveals an isolate with enhanced virulence and clinically undetected colistin heteroresistance. Antimicrob. Agents Chemother. 63, e00107–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported partly by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (grant NRF-2019R1A2C2004879), and by a 2016 grant from the Korean Society of Pediatric Infectious Diseases. The funders did not participate in study design, data collection, data analysis, decision to publish, or manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwan Soo Ko.

Ethics declarations

We have no conflicts of interest to report.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, J., Wi, Y.M., Kim, J.M. et al. Detection of colistin-resistant populations prior to antibiotic exposure in KPC-2-producing Klebsiella pneumoniae clinical isolates. J Microbiol. 59, 590–597 (2021). https://doi.org/10.1007/s12275-021-0610-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-021-0610-1

Keywords

Navigation