Skip to main content
Log in

Salicibibacter cibarius sp. nov. and Salicibibacter cibi sp. nov., two novel species of the family Bacillaceae isolated from kimchi

  • Microbial Systematics and Evolutionary Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

To date, all species in the genus Salicibibacter have been isolated in Korean commercial kimchi. We aimed to describe the taxonomic characteristics of two strains, NKC5-3T and NKC21-4T, isolated from commercial kimchi collected from various regions in the Republic of Korea. Cells of these strains were rod-shaped, Gram-positive, aerobic, oxidase- and catalase-positive, non-motile, halophilic, and alkalitolerant. Both strains, unlike other species of the genus Salicibibacter, could not grow without NaCl. Strains NKC5-3T and NKC21-4T could tolerate up to 25.0% (w/v) NaCl (optimum 10%) and grow at pH 7.0–10.0 (optimum 8.5) and 8.0–9.0 (optimum 8.5), respectively; they showed 97.1% 16S rRNA gene sequence similarity to each other and were most closely related to S. kimchii NKC1-1T (97.0% and 96.8% similarity, respectively). The genome of strain NKC5-3T was nearly 4.6 Mb in size, with 4,456 protein-coding sequences (CDSs), whereas NKC21-4T genome was nearly 3.9 Mb in size, with 3,717 CDSs. OrthoANI values between the novel strains and S. kimchii NKC1-1T were far lower than the species demarcation threshold. NKC5-3T and NKC21-4T clustered together to form branches that were distinct from the other Salicibibacter species. The major fatty acids in these strains were anteiso-C15:0 and anteiso-C17:0, and the predominant menaquinone was menaquinone-7. The polar lipids of NKC5-3T included diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), and five unidentified phospholipids (PL), and those of NKC21-4T included DPG, PG, seven unidentified PLs, and an unidentified lipid. Both isolates had DPG, which is the first case in the genus Salicibibacter. The genomic G + C content of strains NKC5-3T and NKC21-4T was 44.7 and 44.9 mol%, respectively. Based on phenotypic, genomic, phylogenetic, and chemotaxonomic analyses, strains NKC5-3T (= KACC 22040T = DSM 111417T) and NKC21-4T (= KACC 22041T = DSM 111418T) represent two novel species of the genus Salicibibacter, for which the names Salicibibacter cibarius sp. nov. and Salicibibacter cibi sp. nov. are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angiuoli, S.V., Gussman, A., Klimke, W., Cochrane, G., Field, D., Garrity, G., Kodira, C.D., Kyrpides, N., Madupu, R., Markowitz, V., et al. 2008. Toward an online repository of Standard Operating Procedures (SOPs) for (meta)genomic annotation. OMICS 12, 137–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aziz, R.K., Bartels, D., Best, A.A., DeJongh, M., Disz, T., Edwards, R.A., Formsma, K., Gerdes, S., Glass, E.M., Kubal, M., et al. 2008. RAST server: rapid annotations using subsystems technology. BMC Genomics 9, 75.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beck, A.K., Baker, A., Kelly, P.J., Deane, F.P., Shakeshaft, A., Hunt, D., Forbes, E., and Kelly, J.F. 2016. Protocol for a systematic review of evaluation research for adults who have participated in the ‘SMART recovery’ mutual support programme. BMJ Open 6, e009934.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bousfield, G.R., Sugino, H., and Ward, D.N. 1985. Demonstration of a COOH-terminal extension on equine lutropin by means of a common acid-labile bond in equine lutropin and equine chorionic gonadotropin. J. Biol. Chem. 260, 9531–9533.

    Article  CAS  PubMed  Google Scholar 

  • Collins, C.H., Lyne P.M., Grange, J.M., and Falkinham, J.O. 2004. Collins and Lyne’s Microbiological Methods. 8th edn. Arnold, London, United Kingdom.

    Google Scholar 

  • Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.

    Article  PubMed  Google Scholar 

  • Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416.

    Article  Google Scholar 

  • Galperin, M.Y., Makarova, K.S., Wolf, Y.I., and Koonin, E.V. 2015. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 43, 261–269.

    Article  Google Scholar 

  • Hiraishi, A., Ueda, Y., and Ishihara, J. 1998. Quinone profiling of bacterial communities in natural and synthetic sewage activated sludge for enhanced phosphate removal. Appl. Environ. Microbiol. 64, 992–998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hureta-Cepas, J., Forslund, K., Coelho, L.P., Szkarczyk, D., Jensen, L.J., von Mering, C., and Bork, P. 2017. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 34, 2115–2122.

    Article  Google Scholar 

  • Jang, J.Y., Oh, Y.J., Lim, S.K., Park, H.K., Lee, C., Kim, J.Y., Lee, M.A., and Choi, H.J. 2018. Salicibibacter kimchii gen. nov., sp. nov., a moderately halophilic and alkalitolerant bacterium in the family Bacillaceae isolated from kimchi. J. Microbiol. 56, 880–885.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagesen, K., Hallin, P., Rødland, E.A., Staerfeldt, H.H., Rognes, T., and Ussery, D.W. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100–3108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane, D.J. 1991. 16S/23S rRNA sequencing. In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. John Wiley and Sons, New York, USA.

    Google Scholar 

  • Lee, I., Kim, Y.O., Park, S.C., and Chun, J. 2016. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66, 1100–1103.

    Article  CAS  PubMed  Google Scholar 

  • Nei, M. and Kumar, S. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, Oxford, United Kingdom.

    Book  Google Scholar 

  • Oh, Y.J., Jang, J.Y., Lim, S.K., Kwon, M.S., Lee, J., Kim, N.H., Shin, M.Y., Park, H.K., Seo, M.J., and Choi, H.J. 2017. Virgibacillus kimchii sp. nov., a halophilic bacterium isolated from kimchi. J. Microbiol. 55, 933–938.

    Article  CAS  PubMed  Google Scholar 

  • Oh, Y.J., Kim, J.Y., Jo, H.E., Park, H.W., Lim, S.K., Kwon, M.S., and Choi, H.J. 2020. Lentibacillus cibarius sp. nov., isolated from kimchi, a Korean fermented food. J. Microbiol. 58, 387–394.

    Article  CAS  PubMed  Google Scholar 

  • Oh, Y.J., Kim, J.Y., Park, H.W., Jang, J.Y., Lim, S.K., Kwon, M.S., and Choi, H.J. 2019. Salicibibacter halophilus sp. nov., a moderately halophilic bacterium isolated from kimchi. J. Microbiol. 57, 997–1002.

    Article  CAS  PubMed  Google Scholar 

  • Oh, Y.J., Lee, H.W., Lim, S.K., Kwon, M.S., Lee, J., Jang, J.Y., Lee, J.H., Park, H.W., Nam, Y.D., Seo, M.J., et al. 2016a. Lentibacillus kimchii sp. nov., an extremely halophilic bacterium isolated from kimchi, a Korean fermented vegetable. Antonie van Leeuwenhoek 109, 869–876.

    Article  CAS  PubMed  Google Scholar 

  • Oh, Y.J., Lee, H.W., Lim, S.K., Kwon, M.S., Lee, J., Jang, J.Y., Park, H.W., Nam, Y.D., Seo, M.J., and Choi, H.J. 2016b. Gracilibacillus kimchii sp. nov., a halophilic bacterium isolated from kimchi. J. Microbiol. 54, 588–593.

    Article  CAS  PubMed  Google Scholar 

  • Saitou, N. and Nei, M. 1987. Neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Salzman, A.T., Fulton, S., Gordon, N., Meys, M., and Carberry, R. 1993. Development and execution of a biomolecule purification method. Am. Biotechnol. Lab. 11, 40–42, 44.

    CAS  PubMed  Google Scholar 

  • Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., Newark, Delaware, USA.

    Google Scholar 

  • Tindall, B.J., Tomlinson, G.A., and Hochstein, L.I. 1987. Polar lipid composition of a new halobacterium. Syst. Appl. Microbiol. 9, 6–8.

    Article  CAS  PubMed  Google Scholar 

  • Tittsler, R.P. and Sandholzer, L.A. 1936. The use of semi-solid agar for the detection of bacterial motility. J. Bacteriol. 31, 575–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the World Institute of Kimchi (KE2001-1) and funded by the Ministry of Science and ICT, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hak-Jong Choi.

Ethics declarations

The authors declare no financial conflicts of interest.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, Y.J., Kim, J.Y., Lim, S.K. et al. Salicibibacter cibarius sp. nov. and Salicibibacter cibi sp. nov., two novel species of the family Bacillaceae isolated from kimchi. J Microbiol. 59, 460–466 (2021). https://doi.org/10.1007/s12275-021-0513-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-021-0513-1

Keywords

Navigation