Skip to main content
Log in

Vagococcus zengguangii sp. nov., isolated from yak faeces

  • Microbial Systematics and Evolutionary Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Two unknown Gram-stain-positive, catalase- and oxidasenegative, non-motile, and coccus-shaped bacteria, designated MN-17T and MN-09, were isolated from yaks faeces (Bos grunniens) in the Qinghai-Tibet Plateau of China. 16S rRNA gene sequence-based comparative analyses revealed that the two strains were grouped within the genus Vagococcus, displaying the highest similarity with Vagococcus xieshaowenii CGMCC 1.16436T (98.6%) and Vagococcus elongatus CCUG 51432T (96.4%). Both strains grew optimally at 37°C and pH 7.0 in the presence of 0.5% (w/v) NaCl. The complete genome of MN-17T comprises 2,085 putative genes with a total of 2,190,262 bp and an average G + C content of 36.7 mol%. The major fatty acids were C16:0 (31.2%), C14:0 (28.5%), and C18:1ω9c (13.0%); the predominant respiratory quinone was MK-7 (68.8%); the peptidoglycan type was A4α(l-Lys-d-Asp); and the major polar lipid was diphosphatidylglycerol. Together, these supported the affiliation of strain MN-17T to the genus Vagococcus. In silico DNA-DNA hybridization and the average nucleotide identity values between MN-17T and all recognized species in the genus were 21.6–26.1% and 70.7–83.0%, respectively. MN-17T produced acid from d-cellobiose, d-fructose, glycerol, d-glucose, N-acetyl-glucosamine, gentiobiose, d-mannose, d-maltose, d-ribose, d-saccharose, salicin, d-trehalose, and d-xylose. These results distinguished MN-17T and MN-09 from closely related species in Vagococcus. Thus, we propose that strains MN-17T and MN-09 represent a novel species in the genus Vagococcus, with the name Vagococcus zengguangii sp. The type strain is MN-17T (= CGMCC 1.16726T = GDMCC 1.1589T = JCM 33478T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Auch, A.F., von Jan, M., Klenk, H.P., and Göker, M. 2010. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand. Genomic Sci. 2, 117–134.

    Article  PubMed  PubMed Central  Google Scholar 

  • Austrian, R. 1960. The Gram stain and the etiology of lobar pneumonia, an historical note. Bacteriol. Rev. 24, 261–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai, X., Zhao, A., Lan, R., Xin, Y., Xie, H., Meng, Q., Jin, D., Yu, B., Sun, H., Lu, S., et al. 2013. Shiga toxin-producing Escherichia coli in yaks (Bos grunniens) from the Qinghai-Tibetan Plateau, China. PLoS ONE 8, e65537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer, A.W., Kirby, W.M., Sherris, J.C., and Turck, M. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45, 493–496.

    Article  CAS  PubMed  Google Scholar 

  • Berlin, K., Koren, S., Chin, C.S., Drake, J.P., Landolin, J.M., and Phillippy, A.M. 2015. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat. Biotechnol. 33, 623–630.

    Article  CAS  PubMed  Google Scholar 

  • Chaudhari, N.M., Gupta, V.K., and Dutta, C. 2016. BPGA- an ultra-fast pan-genome analysis pipeline. Sci. Rep. 6, 24373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, C., Zhang, W., Zheng, H., Lan, R., Wang, H., Du, P., Bai, X., Ji, S., Meng, Q., Jin, D., et al. 2013. Minimum core genome sequence typing of bacterial pathogens: a unified approach for clinical and public health microbiology. J. Clin. Microbiol. 51, 2582–2591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins, M.D., Ash, C., Farrow, J.A., Wallbanks, S., and Williams, A.M. 1989. 16S ribosomal ribonucleic acid sequence analyses of lactococci and related taxa. Description of Vagococcus fluvialis gen. nov., sp. nov. J. Appl. Bacteriol. 67, 453–460.

    Article  CAS  PubMed  Google Scholar 

  • Collins, M.D. and Jones, D. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol. Rev. 45, 316–354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drancourt, M., Roux, V., Fournier, P.E., and Raoult, D. 2004. rpoB gene sequence-based identification of aerobic Gram-positive cocci of the genera Streptococcus, Enterococcus, Gemella, Abiotrophia, and Granulicatella. J. Clin. Microbiol. 42, 497–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.

    Article  PubMed  Google Scholar 

  • Garcia, V., Abat, C., and Rolain, J.M. 2016. Report of the first Vagococcus lutrae human infection, Marseille, France. New Microbes New Infect. 9, 56–57.

    Article  CAS  PubMed  Google Scholar 

  • Ge, Y., Yang, J., Lai, X.H., Zhang, G., Jin, D., Lu, S., Wang, B., Huang, Y., Huang, Y., Ren, Z., et al. 2020. Vagococcus xieshaowenii sp. nov., isolated from snow finch (Montifringilla taczanowskii) cloacal content. Int. J. Syst. Evol. Microbiol. 70, 2493–2498.

    Article  CAS  PubMed  Google Scholar 

  • Hoyles, L., Lawson, P.A., Foster, G., Falsen, E., Ohlén, M., Grainger, J.M., and Collins, M.D. 2000. Vagococcus fessus sp. nov., isolated from a seal and a harbour porpoise. Int. J. Syst. Evol. Microbiol. 50, 1151–1154.

    Article  CAS  PubMed  Google Scholar 

  • Jaffrès, E., Prévost, H., Rossero, A., Joffraud, J.J., and Dousset, X. 2010. Vagococcus penaei sp. nov., isolated from spoilage microbiota of cooked shrimp (Penaeus vannamei). Int. J. Syst. Evol. Microbiol. 60, 2159–2164.

    Article  PubMed  CAS  Google Scholar 

  • Jin, D., Yang, J., Lu, S., Lai, X.H., Xiong, Y., and Xu, J. 2017. Enterococcus wangshanyuanii sp. nov., isolated from faeces of yaks (Bos grunniens). Int. J. Syst. Evol. Microbiol. 67, 5216–5221.

    Article  PubMed  Google Scholar 

  • Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K.F., Itoh, M., Kawashima, S., Katayama, T., Araki, M., and Hirakawa, M. 2006. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34, D354–D357.

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., and Hattori, M. 2004. The KEGG resource for deciphering the genome. Nucleic Acids Res. 32, D277–D280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Killer, J., Švec, P., Sedláček, I., Černohlávková, J., Benada, O., Hroncová, Z., Havlík, J., Vlková, E., Rada, V., Kopečný, J., et al. 2014. Vagococcus entomophilus sp. nov., from the digestive tract of a wasp (Vespula vulgaris). Int. J. Syst. Evol. Microbiol. 64, 731–737.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotidesequences. J. Mol. Evol. 16, 111–120.

    Article  CAS  PubMed  Google Scholar 

  • Kolaczkowski, B. and Thornton, J.W. 2004. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature 431, 980–984.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., et al. 2007. Clustal W and clustal X version 2.0. Bioinformatics 23, 2947–2948.

    Article  CAS  PubMed  Google Scholar 

  • Lawson, P.A., Falsen, E., Cotta, M.A., and Whitehead, T.R. 2007. Vagococcus elongatus sp. nov., isolated from a swine-manure storage pit. Int. J. Syst. Evol. Microbiol. 57, 751–754.

    Article  CAS  PubMed  Google Scholar 

  • Lawson, P.A., Foster, G., Falsen, E., Ohlén, M., and Collins, M.D. 1999. Vagococcus lutrae sp. nov., isolated from the common otter (Lutra lutra). Int. J. Syst. Bacteriol. 49, 1251–1254.

    Article  CAS  PubMed  Google Scholar 

  • Li, D., Liu, C.M., Luo, R., Sadakane, K., and Lam, T.W. 2015. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676.

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin, R.W., Shewmaker, P.L., Whitney, A.M., Humrighouse, B.W., Lauer, A.C., Loparev, V.N., Gulvik, C.A., Cochran, P.A., and Dowd, S.E. 2017. Enterococcus crotali sp. nov., isolated from faecal material of a timber rattlesnake. Int. J. Syst. Evol. Microbiol. 67, 1984–1989.

    Article  CAS  PubMed  Google Scholar 

  • Meier-Kolthoff, J.P., Auch, A.F., Klenk, H.P., and Göker, M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14, 60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nahaie, M.R., Goodfellow, M., Minnikin, D.E., and Hájek, V. 1984. Polar lipid and isoprenoid quinone composition in the classification of Staphylococcus. J. Gen. Microbiol. 130, 2427–2437.

    CAS  PubMed  Google Scholar 

  • Naser, S.M., Thompson, F.L., Hoste, B., Gevers, D., Dawyndt, P., Vancanneyt, M., and Swings, J. 2005. Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 151, 2141–2150.

    Article  CAS  PubMed  Google Scholar 

  • Price, M.N., Dehal, P.S., and Arkin, A.P. 2009. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosselló-Móra, R. and Amann, R. 2015. Past and future species definitions for Bacteria and Archaea. Syst. Appl. Microbiol. 38, 209–216.

    Article  PubMed  Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., Newark, Delaware, USA.

    Google Scholar 

  • Schleifer, K.H. and Kandler, O. 1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36, 407–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shewmaker, P.L., Steigerwalt, A.G., Morey, R.E., Carvalho, M.D.G.S., Elliott, J.A., Joyce, K., Barrett, T.J., Teixeira, L.M., and Facklam, R.R. 2004. Vagococcus carniphilus sp. nov., isolated from ground beef. Int. J. Syst. Evol. Microbiol. 54, 1505–1510.

    Article  CAS  PubMed  Google Scholar 

  • Shewmaker, P.L., Whitney, A.M., Gulvik, C.A., Humrighouse, B.W., Gartin, J., Moura, H., Barr, J.R., Moore, E.R.B., Karlsson, R., Pinto, T.C.A., et al. 2019. Vagococcus bubulae sp. nov., isolated from ground beef, and Vagococcus vulneris sp. nov., isolated from a human foot wound. Int. J. Syst. Evol. Microbiol. 69, 2268–2276.

    Article  CAS  PubMed  Google Scholar 

  • Sorroza, L., Padilla, D., Acosta, F., Román, L., Grasso, V., Vega, J., and Real, F. 2012. Characterization of the probiotic strain Vagococcus fluvialis in the protection of European sea bass (Dicentrarchus labrax) against vibriosis by Vibrio anguillarum. Vet. Microbiol. 155, 369–373.

    Article  CAS  PubMed  Google Scholar 

  • Sundararaman, A., Srinivasan, S., and Lee, S.S. 2017. Vagococcus humatus sp. nov., isolated from soil beneath a decomposing pig carcass. Int. J. Syst. Evol. Microbiol. 67, 330–335.

    Article  CAS  PubMed  Google Scholar 

  • Tak, E.J., Kim, H.S., Lee, J.Y., Kang, W., Hyun, D.W., Kim, P.S., Shin, N.R., and Bae, J.W. 2017. Vagococcus martis sp. nov., isolated from the small intestine of a marten, Martes flavigula. Int. J. Syst. Evol. Microbiol. 67, 3398–3402.

    Article  CAS  PubMed  Google Scholar 

  • Teixeira, L.M., Carvalho, M.G., Merquior, V.L., Steigerwalt, A.G., Brenner, D.J., and Facklam, R.R. 1997. Phenotypic and genotypic characterization of Vagococcus fluvialis, including strains isolated from human sources. J. Clin. Microbiol. 35, 2778–2781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallbanks, S., Martinez-Murcia, A.J., Fryer, J.L., Phillips, B.A., and Collins, M.D. 1990. 16S rRNA sequence determination for members of the genus Carnobacterium and related lactic acid bacteria and description of Vagococcus salmoninarum sp. nov. Int. J. Syst. Bacteriol. 40, 224–230.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Cui, Y.S., Kwon, C.S., Lee, S.T., Lee, J.S., and Im, W.T. 2011. Vagococcus acidifermentans sp. nov., isolated from an acidogenic fermentation bioreactor. Int. J. Syst. Evol. Microbiol. 61, 1123–1126.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Y.C., Lin, S.T., Guu, J.R., Tamura, T., Mori, K., Wang, L.T., Huang, L., and Watanabe, K. 2020. Vagococcus silagei sp. nov., isolated from brewer’s grain used to make silage in Taiwan. Int. J. Syst. Evol. Microbiol. 70, 1953–1960.

    Article  CAS  PubMed  Google Scholar 

  • Wullschleger, S., Jans, C., Seifert, C., Baumgartner, S., Lacroix, C., Bonfoh, B., Stevens, M.J.A., and Meile, L. 2018. Vagococcus teuberi sp. nov., isolated from the Malian artisanal sour milk fènè. Syst. Appl. Microbiol. 41, 65–72.

    Article  PubMed  Google Scholar 

  • Xu, Y., Xu, X., Lan, R., Xong, Y., Ye, C., Ren, Z., Liu, L., Zhao, A., Wu, L.F., and Xu, J. 2013. An O island 172 encoded RNA helicase regulates the motility of Escherichia coli O157:H7. PLoS ONE 8, e64211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017a. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon, S.H., Ha, S.M., Lim, J., Kwon, S., and Chun, J. 2017b. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 110, 1281–1286.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from National Science and Technology Major Project of China (2018ZX10712001-018, 2017ZX10303405-002, 2017ZX10303405-002-005), National Science and Technology of China (2017FY101202), National Key R&D Program of China (2019YFC1200500 and 2019YFC1200505), Sanming Project of Medicine in Shenzhen (SZSM201811071) and Research Units of Discovery of Unknown Bacteria and Function (2018RU010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyan Zhang or Jianguo Xu.

Ethics declarations

The ethical practice was approved by Ethical Committee of the National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (# ICDC-2016004).

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956. Copyright © 2021, The Microbiological Society of Korea

Conflict of Interest

The authors declare that therd are no conflict of interest.

Electronic Supplementary Material

12275_2021_406_MOESM1_ESM.pdf

Supplementary data Table S1. Characteristics that differentiate V. zengguangii sp. from other species in the genus Vagococcus

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Y., Jin, D., Lai, XH. et al. Vagococcus zengguangii sp. nov., isolated from yak faeces. J Microbiol. 59, 1–9 (2021). https://doi.org/10.1007/s12275-021-0406-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-021-0406-3

Keywords

Navigation