Skip to main content
Log in

Analysis of a bac operon-silenced strain suggests pleiotropic effects of bacilysin in Bacillus subtilis

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Bacilysin, as the simplest peptide antibiotic made up of only L-alanine and L-anticapsin, is produced and excreted by Bacillus subtilis under the control of quorum sensing. We analyzed bacilysin-nonproducing strain OGU1 which was obtained by bacA-targeted pMutin T3 insertion into the parental strain genome resulting in a genomic organization (bacA′::lacZ::erm::bacABCDEF) to form an IPTG-inducible bac operon. Although IPTG induction provided 3- to 5-fold increment in the transcription of bac operon genes, no bacilysin activity was detectable in bioassays and inability of the OGU1 to form bacilysin was confirmed by UPLC-mass spectrometry analysis. Phenotypic analyses revealed the deficiencies in OGU1 with respect to colony pigmentation, spore coat proteins, spore resistance and germination, which could be rescued by external addition of bacilysin concentrate into its cultures. 2DE MALDI-TOF/MS and nanoLC-MS/MS were used as complementary approaches to compare cytosolic proteomes of OGU1. 2-DE identified 159 differentially expressed proteins corresponding to 121 distinct ORFs. In nanoLC-MS/MS, 76 proteins were differentially expressed in OGU1. Quantitative transcript analyses of selected genes validated the proteomic findings. Overall, the results pointed to the impact of bacilysin on expression of certain proteins of sporulation and morphogenesis; the members of mother cell compartment-specific σE and σK regulons in particular, quorum sensing and two component-global regulatory systems, peptide transport, stress response as well as CodY- and ScoC-regulated proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ababneh, Q.O., Tindall, A.J., and Herman, J.K. 2015. A secreted factor coordinates environmental quality with Bacillus development. PLoS One10, e0144168.

    PubMed  PubMed Central  Google Scholar 

  • Atluri, S., Raqkouski, K., Cortezzo, D.E., and Setlow, P. 2006. Cooperativity between different nutrient receptors in germination of spores of Bacillus subtilis and reduction of this cooperativity by alterations in the GerB receptor. J. Bacteriol.188, 28–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banse, A.V., Chastanet, A., Rahn-Lee, L., Hobbs, E.C., and Losick, R. 2008. Parallel pathways of repression and antirepression governing the transition to stationary phase in Bacillus subtilis. Proc. Natl. Acad. Sci. USA105, 15547–15552.

    CAS  PubMed  Google Scholar 

  • Barbe, V., Cruveiller, S., Kunst, F., Lenoble, P., Meurice, G., and Sekowska, A. 2009. From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later. Microbiology155, 1758–1775.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belitsky, B.R., Barbieri, G., Albertini, A.M., Ferrari, E., Strauch, M.A., and Sonenshein, A.L. 2015. Interactive regulation by the Bacillus subtilis global regulators CodY and ScoC. Mol. Microbiol.97, 698–716.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brinsmade, S.R., Alexander, E.L., Livny, J., Stettner, A.I., Segrè, D., Rhee, K.Y., and Sonenshein, A.L. 2014. Hierarchical expression of genes controlled by the Bacillus subtilis global regulatory protein CodY. Proc. Natl. Acad. Sci. USA111, 8227–8232.

    CAS  PubMed  Google Scholar 

  • Cao, M. and Helmann, J.D. 2004. The Bacillus subtilis extracytoplasmic-function σX factor regulates modification of the cell envelope and resistance to cationic antimicrobial peptides. J. Bacteriol.186, 1136–1146.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castellanos-Juárez, F.X., Alvarez-Alvarez, C., Yasbin, R.E., Setlow, B., Setlow, P., and Pedraza-Reyes, M. 2006. YtkD and MutT protect vegetative cells but not spores of Bacillus subtilis from oxidative stress. J. Bacteriol.188, 2285–2289.

    PubMed  PubMed Central  Google Scholar 

  • Čihák, M., Kameník, Z., Šmídová, K., Bergman, N., Benada, O., Kofroňová O., Petříčková, K., and Bobek, J. 2017. Secondary metabolites produced during the germination of Streptomyces coelicolor. Front. Microbiol.8, 2495.

    PubMed  PubMed Central  Google Scholar 

  • Collins, J.A., Irnov, I., Baker, S., and Winkler, W.C. 2007. Mechanism of mRNA destabilization by the glmS ribozyme. Genes Dev.21, 3356–3368.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel, R.A. and Errington, J. 1993. Cloning, DNA sequence, functional analysis and transcriptional regulation of the genes encoding dipicolinic acid synthetase required for sporulation in Bacillus subtilis. J. Mol. Biol.232, 468–483.

    CAS  PubMed  Google Scholar 

  • Derouiche, A., Shi, L., Bidnenko, V., Ventroux, M., Pigonneau, N., Franz-Wachtel, M., Kalantari, A., Nessler, S., Noirot-Gros, M.F., and Mijakovic, I. 2015. Bacillus subtilis SalA is a phosphorylation-dependent transcription regulator that represses scoC and activates the production of the exoprotease AprE. Mol. Microbiol.97, 1195–1208.

    CAS  PubMed  Google Scholar 

  • de Hoon, M.J., Eichenberger, P., and Vitkup, D. 2010. Hierarchical evolution of the bacterial sporulation network. Curr. Biol.20, R735–R745.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eymann, C., Dreisbach, A., Albrecht, D., Bernhardt, J., Becher, D., Gentner, S., Tam le, T., Büttner, K., Buurman, G., Scharf, C., et al. 2004. A comprehensive proteome map of growing Bacillus subtilis cells. Proteomics4, 2849–2876.

    CAS  PubMed  Google Scholar 

  • Eymann, C., Homuth, G., Scharf, C., and Hecker, M. 2002. Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis. J. Bacteriol.184, 2500–2520.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fajardo, A. and Martinez, J.L. 2008. Antibiotics as signals that trigger specific bacterial responses. Curr. Opin. Microbiol.11, 161–167.

    CAS  PubMed  Google Scholar 

  • Gao, R., Mack, T.R., and Stock, A.M. 2007. Bacterial responses regulators: versatile regulatory strategies from common domains. Trends Biochem. Sci.32, 225–234.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Görg, A., Weiss, W., and Dunn, M.J. 2004. Current two-dimensional electrophoresis technology for proteomics. Proteomics4, 3665–3685.

    PubMed  Google Scholar 

  • Hamon, M.A. and Lazazzera, B.A. 2001. The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis. Mol. Microbiol.42, 1199–1209.

    CAS  PubMed  Google Scholar 

  • Hecker, M., Pané-Farré, J., and Völker, U. 2007. SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria. Annu. Rev. Microbiol.61, 215–236.

    CAS  PubMed  Google Scholar 

  • Hecker, M., Reder, A., Fuchs, S., Pagels, M., and Engelmann, S. 2009. Physiological proteomics and stress/starvation responses in Bacillus subtilis and Staphylococcus aureus. Res. Microbiol.160, 245–258.

    CAS  PubMed  Google Scholar 

  • Heeb, S., Fletcher, M.P., Chhabra, S.R., Diggle, S.P., Williams, P., and Cámara, M. 2011. Quinolones: from antibiotics to autoinducers. FEMS Microbiol. Rev.35, 247–274.

    CAS  PubMed  Google Scholar 

  • Hoch, J.A. 2000. Two-component and phosphorelay signal transduction. Curr. Opin. Microbiol.3, 165–170.

    CAS  PubMed  Google Scholar 

  • Horsburgh, M.J., Thackray, P.D., and Moir, A. 2001. Transcriptional responses during outgrowth of Bacillus subtilis endospores. Microbiology147, 2933–2941.

    CAS  PubMed  Google Scholar 

  • Inaoka, T., Takahashi, K., Ohnishi-Kameyama, M., Yoshida, M., and Ochi, K. 2003. Guanine nucleotides guanosine 5′-diphosphate 3′-diphosphate and GTP co-operatively regulate the production of an antibiotic bacilysin in Bacillus subtilis. J. Biol. Chem.278, 2169–2176.

    CAS  PubMed  Google Scholar 

  • Inaoka, T., Wang, G., and Ochi, K. 2009. ScoC regulates bacilysin production at the transcription level in Bacillus subtilis. J. Bacteriol.191, 7367–7371.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii, H., Tanaka, T., and Ogura, M. 2013. The Bacillus subtilis response regulator gene degU is positively regulated by CcpA and by catabolite-repressed synthesis of ClpC. J. Bacteriol.195, 193–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jicinska, E. 1960. Some physiological features of asporogenic mutants of bacilli. Mikrobiologiia29, 195–200.

    CAS  PubMed  Google Scholar 

  • Karatan, E., Saulmon, M.M., Bunn, M.W., and Ordal, G.W. 2001. Phosphorylation of the responses regulator CheV is required for adaptation to attractants during Bacillus subtilis chemotaxis. J. Biol. Chem.276, 43618–43626.

    CAS  PubMed  Google Scholar 

  • Karataş, A.Y., Çetin, S., and Özcengiz, G. 2003. The effects of insertional mutations in comQ, comP, srfA, spo0H, spo0A and abrB genes on bacilysin biosynthesis in Bacillus subtilis. Biochim. Biophys. Acta1626, 51–56.

    PubMed  Google Scholar 

  • Kaushal, B., Paul, S., and Hulett, F.M. 2010. Direct regulation of Bacillus subtilis phoPR transcription by transition state regulator ScoC. J. Bacteriol.192, 3103–3113.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kearns, D.B. and Losick, R. 2003. Swarming motility in undomesticated Bacillus subtilis. Mol. Microbiol.49, 581–590.

    CAS  PubMed  Google Scholar 

  • Kenig, M., Vandamme, E., and Abraham, E.P. 1976. The mode of action of bacilysin and anticapsin and biochemical properties of bacilysin-resistant mutants. J. Gen. Microbiol.94, 46–54.

    CAS  PubMed  Google Scholar 

  • Kleerebezem, M. 2004. Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. Peptides25, 1405–1414.

    CAS  PubMed  Google Scholar 

  • Koide, A., Perego, M., and Hoch, J.A. 1999. ScoC regulates peptide transport and sporulation initiation in Bacillus subtilis. J. Bacteriol.181, 4114–4117.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Köroğlu, T.E., Öğülür, İ., Mutlu, S., Yazgan-Karataş, A., and Özcengiz, G. 2011. Global regulatory systems operating in bacilysin biosynthesis in Bacillus subtilis. J. Mol. Microbiol. Biotechnol.20, 144–155.

    PubMed  Google Scholar 

  • Kuipers, O.P., Beerthuyzen, M.M., de Ruyter, P.G., Luesink, E.J., and de Vos, W.M. 1995. Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J. Biol. Chem.270, 27299–27304.

    CAS  PubMed  Google Scholar 

  • Kunst, F., Ogasawara, N., Moszer, I., Albertini, A.M., Alloni, G., Azevedo, V., Bertero, M.G., Bessières, P., Bolotin, A., Borchert, S., et al. 1997. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature390, 249–256.

    CAS  PubMed  Google Scholar 

  • Leichert, L.I., Scharf, C., and Hecker, M. 2003. Global characterization of disulfide stress in Bacillus subtilis. J. Bacteriol.185, 1967–1975.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Linares, J.F., Gustafsson, I., Baquero, F., and Martinez, J.L. 2006. Antibiotics as intermicrobial signaling agents instead of weapons. Proc. Natl. Acad. Sci. USA103, 19485–19489.

    Google Scholar 

  • Lombardia, E., Rovetto, A.J., Arabolaza, A.L., and Grau, R.R. 2006. A LuxS-dependent cell-to-cell language regulates social behavior and development in Bacillus subtilis. J. Bacteriol.188, 4442–4452.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, C., Zhou, H., Zou, J., Wang, X., Zhang, R., Xiang, Y., and Chen, Z. 2015. Bacillomycin L and surfactin contribute synergistically to the phenotypic features of Bacillus subtilis 916 and the bio-control of rice sheath blight induced by Rhizoctonia solani. Appl. Microbiol. Biotechnol.99, 1897–1910.

    CAS  PubMed  Google Scholar 

  • Mader, J.U., Antelmann, H., Buder, T., Dahl, M., Hecker, M., and Homuth, G. 2002. Bacillus subtilis functional genomics: genome-wide analysis of the DegS-DegU regulon by transcriptomics and proteomics. Mol. Genet. Genomics268, 455–467.

    CAS  PubMed  Google Scholar 

  • Mahlstedt, S.A. and Walsh, C.T. 2010. Investigation of anticapsin biosynthesis reveals a four-enzyme pathway to tetrahydrotyrosine in Bacillus subtilis. Biochemistry49, 912–923.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mariappan, A., Makarewicz, O., Chen, X.H., and Borriss, R. 2012. Two-component responses regulator DegU controls the expression of bacilysin in plant-growth-promoting bacterium Bacillus amyloliquefaciens FZB42. J. Mol. Microbiol. Biotechnol.22, 114–125.

    CAS  PubMed  Google Scholar 

  • Mascher, T., Helmann, J.D., and Unden, G. 2006. Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol. Mol. Biol. Rev.70, 910–938.

    CAS  PubMed  PubMed Central  Google Scholar 

  • May, J.J., Finking, R., Wiegeshoss, F., Weber, T.T., Bandur, N., Koert, U., and Marahiel, M.A. 2005. Inhibition of the D-alanine: D-alanyl carrier protein ligase from Bacillus subtilis increases the bacterium’s susceptibility to antibiotics that target the cell wall. FEBS J.272, 2993–3003.

    CAS  PubMed  Google Scholar 

  • McLoon, A.L., Guttenplan, S.B., Kearns, D.B., Kolter, R., and Losick, R. 2011. Tracing the domestication of a biofilm-forming bacterium. J. Bacteriol.193, 2027–2034.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michna, R.H., Zhu, B., Mäder, U., and Stülke, J. 2016. SubtiWiki 2.0–an integrated database for the model organism Bacillus subtilis. Nucleic Acids Res.44, D654–D662.

    CAS  PubMed  Google Scholar 

  • Milewsky, S., Chmara, H., and Borowski, E. 1986. Anticapsin: an active site directed inhibitor of glucosamine-6-phosphate synthetase from Candida albicans. Drugs Exp. Clin. Res.12, 577–583.

    Google Scholar 

  • Molle, V., Nakaura, Y., Shivers, R.P., Yamaquchi, H., Losick, R., Fujita, Y., and Sonenshein, A.L. 2003. Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis. J. Bacteriol.185, 1911–1922.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano, M.M., Zheng, G., and Zuber, P. 2000a. Dual control of sboalb operon expression by the Spo0 and ResDE systems of signal transduction under anaerobic conditions in Bacillus subtilis. J. Bacteriol.182, 3274–3277.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano, M.M., Zhu, Y., Lacelle, M., Zhang, X., and Hulett, F.M. 2000b. Interaction of ResD with regulatory regions of anaerobically induced genes in Bacillus subtilis. Mol. Microbiol.37, 1198–1207.

    CAS  PubMed  Google Scholar 

  • Neuhoff, V., Arold, N., Taube, D., and Ehrhardt, W. 1988. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis9, 255–262.

    CAS  Google Scholar 

  • Nicholson, W.L. and Setlow, P. 1990. Sporulation, germination and outgrowth. In Harwood, C.R. and Cutting, S.M. (eds.), Molecular Biological Methods for Bacillus, pp. 391–450. Chichester: Wiley, NY, USA.

    Google Scholar 

  • Ohki, R., Giyanto, Tateno, K., Masuyama, W., Moriya, S., Kobayashi, K., and Ogasawara, N. 2003. The BceRS two-component regulatory system induces expression of the bacitracin transporter, BceAB, in Bacillus subtilis. Mol. Microbiol.49, 1135–1144.

    CAS  PubMed  Google Scholar 

  • Old, W.M., Meyer-Arendt, K., Aveline-Wolf, L., Pierce, K.G., Mendoza, A., Sevinsky, J.P., Resing, K.A., and Ahn, N.G. 2005. Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol. Cell. Proteomics4, 1487–1502.

    CAS  PubMed  Google Scholar 

  • Özcengiz, G., Alaeddinoğlu, N.G., and Demain, A.L. 1990. Regulation of bacilysin biosynthesis by Bacillus subtilis. J. Ind. Microbiol.6, 91–100.

    PubMed  Google Scholar 

  • Özcengiz, G. and Ögülür, İ. 2015. Biochemistry, genetics and regulation of bacilysin biosynthesis and its significance more than an antibiotic. N. Biotechnol.32, 612–619.

    PubMed  Google Scholar 

  • Parker, J.B. and Walsh, C.T. 2012. Olefin isomerization regiochemistries during tandem action of BacA and BacB on prephenate in bacilysin biosynthesis. Biochemistry51, 3241–3251.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parker, J.B. and Walsh, C.T. 2013. Action and timing of BacC and BacD in the late stages of biosynthesis of the dipeptide antibiotic bacilysin. Biochemistry52, 889–901.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perry, D. and Abraham, E.P. 1979. Transport and metabolism of bacilysin and other peptides by suspensions of Staphylococcus aureus. J. Gen. Microbiol.115, 213–221.

    CAS  PubMed  Google Scholar 

  • Petersohn, A., Brigulia, M., Hass, S., Hoheisel, J.D., Völker, U., and Hecker, M. 2001. Global analysis of the general stress response of Bacillus subtilis. J. Bacteriol.183, 5617–5631.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Plomp, M., Carroll, A.M., Setlow, P., and Malkin, A.J. 2014. Architecture and assembly of the Bacillus subtilis spore coat. PLoS One9, e108560.

    PubMed  PubMed Central  Google Scholar 

  • Prajapati, D., Kumari, N., Dave, K., Chatupale, V., and Pohnerkar, J. 2019. Chromomycin, an antibiotic produced by Streptomyces flaviscleroticus might play a role in the resistance to oxidative stress and is essential for viability in stationary phase. Environ. Microbiol.21, 814–826.

    CAS  PubMed  Google Scholar 

  • Rajavel, M., Mitra, A., and Gopal, B. 2009. Role of Bacillus subtilis BacB in the synthesis of bacilysin. J. Biol. Chem.284, 31882–31892.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramagli, L.S. and Rodriguez, L.V. 1985. Quantitation of microgram amounts of protein in two-dimensional polyacrylamide gel electrophoresis sample buffer. Electrophoresis6, 559–563.

    CAS  Google Scholar 

  • Rao, X., Huang, X., Zhou, Z., and Lin, X. 2013. An improvement of the 2−ΔΔCT method for quantitative real-time polymerase chain reaction data analysis. Biostat. Bioinforma. Biomath.3, 71–85.

    PubMed  PubMed Central  Google Scholar 

  • Roscoe, J. and Abraham, E.P. 1966. Experiments relating to the biosynthesis of bacilysin. Biochem. J.99, 793–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rukmana, A., Morimoto, T., Takahashi, H., Giyanto, and Ogasawara, N. 2009. Assessment of transcriptional responses of Bacillus subtilis cells to the antibiotic enduracidin, which interferes with cell wall synthesis, using a high-density tiling chip. Genes Genet. Syst.84, 253–267.

    CAS  PubMed  Google Scholar 

  • Schmitz, S., Hoffmann, A., Szekat, C., Rudd, B., and Bierbaum, G. 2006. The lantibiotic mersacidin is an autoinducing peptide. Appl. Environ. Microbiol.72, 7270–7277.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder, J.W. and Simmons, L.A. 2013. Complete genome sequence of Bacillus subtilis strain PY79. Genome Announc.1, e01085–13.

    PubMed  PubMed Central  Google Scholar 

  • Shank, E.A. and Kolter, R. 2011. Extracellular signaling and multicellularity in Bacillus subtilis. Curr. Opin. Microbiol.14, 741–747.

    CAS  PubMed  Google Scholar 

  • Shomura, Y., Hinokuchi, E., Ikeda, H., Senoo, A., Takahashi, Y., Saito, J., Komori, H., Shibata, N., Yonetani, Y., and Higuchi, Y. 2012. Structural and enzymatic characterization of BacD, an lamino acid dipeptide ligase from Bacillus subtilis. Protein Sci.21, 707–716.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steil, L., Serrano, M., Henriques, A.O., and Völker, U. 2005. Genome-wide analysis of temporally regulated and compartment-specific gene expression in sporulating cells of Bacillus subtilis. Microbiology151, 399–420.

    CAS  PubMed  Google Scholar 

  • Steinborn, G., Hajirezaei, M.R., and Hofemeister, J. 2005. bac genes for recombinant bacilysin and anticapsin production in Bacillus subtilis host strains. Arch. Microbiol.183, 71–79.

    CAS  PubMed  Google Scholar 

  • Steinfels, E., Orelle, C., Fantino, J.R., Dalmas, O., Rigaud, J.L., Denizot, F., Di Pietro, A., and Jault, J.M. 2004. Characterization of YvcC (BmrA), a multidrug ABC transporter constitutively expressed in Bacillus subtilis. Biochemistry43, 7491–7502.

    CAS  PubMed  Google Scholar 

  • Takamatsu, H., Kodama, T., Imamura, A., Asai, K., Kobayashi, K., Nakayama, T., Ogasawara, N., and Watabe, K. 2000. The Bacillus subtilis yabG gene is transcribed by SigK RNA polymerase during sporulation, and yabG mutant spores have altered coat protein composition. J. Bacteriol.182, 1883–1888.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takamatsu, H., Kodama, T., and Watabe, K. 1999. Assembly of the CotSA coat protein into spores requires CotS in Bacillus subtilis. FEMS Microbiol. Lett.174, 201–206.

    CAS  PubMed  Google Scholar 

  • Tenconi, L., Traxler, M.F., Hoebreck, C., van Wezel, G.P., and Rigali, S. 2018. Production of prodiginines is part of a programmed cell death process in Streptomyces coelicolor. Front. Microbiol.9, 1742.

    PubMed  PubMed Central  Google Scholar 

  • Upton, M., Tagg, J.R., Wescombe, P., and Jenkinson, H.F. 2001. Intra- and interspecies signaling between Streptococcus salivarius and Streptococcus pyogenes mediated by SalA and SalA1 lantibiotic peptides. J. Bacteriol.183, 3931–3938.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker, J.E. and Abraham, E.P. 1970. The structure of bacilysin and other products of Bacillus subtilis. Biochem. J.118, 563–570.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wescombe, P.A. and Tagg, J.R. 2003. Purification and characterization of streptin, a type A1 lantibiotic produced by Streptococcus pyogenes. Appl. Environ. Microbiol.69, 2737–2747.

    PubMed  PubMed Central  Google Scholar 

  • Yazgan, A., Özcengiz, G., and Marahiel, M.A. 2001. Tn10 insertional mutations of Bacillus subtilis that block the biosynthesis of bacilysin. Biochem. Biophys. Acta.1518, 87–94.

    CAS  PubMed  Google Scholar 

  • Youngman, P., Perkins, J.B., and Losick, R. 1984. Construction of a cloning site near one end of Tn917 into which foreign DNA may be inserted without affecting transposition in Bacillus subtilis or expression of the transposon-borne erm gene. Plasmid12, 1–9.

    CAS  PubMed  Google Scholar 

  • Zheng, L., Donovan, W.P., Fitz-James, P.C., and Losick, R. 1988. Gene encoding a morphogenic protein required in the assembly of the outer coat of the Bacillus subtilis endospore. Genes Dev.2, 1047–1054.

    CAS  PubMed  Google Scholar 

  • Zhu, B. and Stülke, J. 2018. SubtiWiki in 2018: from genes and proteins to functional network annotation of the model organism Bacillus subtilis. Nucleic Acids Res.46, D743–D748.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Turkish Scientific and Technical Research Council [the projects TBAG-106T535 and KBAG 116Z351] and partly by Middle East Technical University Scientific Research Funds. We would like to acknowledge Prof. Dörte Becher and Dr. Dirk Albrecht of the Institute of Microbiology, Ernst-Moritz-Arndt-University, Griefswald, Germany and Assoc. Prof. Ömür Çelikbiçak and Dr. Melis Ş. Ekiz of HUNITECH Center of Hacettepe University, Ankara for providing excellent services for MS analyses. We thank our former and present students who provided assistance in certain experiments, and Dr. Sezer Okay for his help in interpretation of comparative genome sequences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gülay Özcengiz.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ertekin, O., Kutnu, M., Taşkin, A.A. et al. Analysis of a bac operon-silenced strain suggests pleiotropic effects of bacilysin in Bacillus subtilis. J Microbiol. 58, 297–313 (2020). https://doi.org/10.1007/s12275-020-9064-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-020-9064-0

Keywords

Navigation