Skip to main content
Log in

Fulvimarina endophytica sp. nov., a novel endophytic bacterium isolated from bark of Sonneratia caseolaris

  • Microbial Systematics and Evolutionary Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

A Gram-negative, aerobic, short-rod-shaped, motile (with a terminal flagellum), non-spore-forming bacterium, designated strain 85T, was isolated from a surface-sterilized bark of Sonneratia caseolaris collected from Qinzhou in Guangxi, China and was analyzed using a polyphasic approach to determine its taxonomic position. Strain 85T grew optimally in the presence of 1–2% (w/v) NaCl at 30°C and pH 6.0–7.0. Phylogenetic analysis based on 16S rRNA gene sequence suggested that strain 85T belonged to the genus Fulvimarina and shared the highest 16S rRNA gene sequence similarity with Fulvimarina pelagi HTCC2506T (96.16%). The cell-wall peptidoglycan contained meso-diaminopimelic acid and ubiquinone Q-10 was the predominant respiratory lipoquinone. The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, an unidentified amino lipid, three unidentified phospholipids and six unidentified lipids. The major fatty acid was C18:1ω7c. The DNA G+C content of strain 85T was 65.4 mol%, and the average nucleotide identity and estimated DDH values between strain 85T and the type strain of Fulvimarina pelagi HTCC2506T were 77.3% and 21.7%, respectively. Based on the phylogenetic, phenotypic, and chemotaxonomic analyses, strain 85T should be considered as a novel species of the genus Fulvimarina with the proposed name Fulvimarina endophytica sp. nov., and its type strain is 85T (= KCTC 62717T = CGMCC 1.13665T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cappuccino, J.G. and Sherman, N. 2002. Microbiology: a laboratory manual, 6th ed. Benjamin Cummings Pearson Education, San Francisco, USA.

    Google Scholar 

  • Cho, J.C. and Giovannoni, S.J. 2003. Fulvimarina pelagi gen. nov., sp. nov., a marine bacterium that forms a deep evolutionary lineage of descent in the order “Rhizobiales”. Int. J. Syst. Evol. Microbiol. 53, 1853–1859.

    Article  CAS  PubMed  Google Scholar 

  • Collins, M.D., Pirouz, T., Goodfellow, M., and Minnikin, D.E. 1977. Distribution of menaquinones in actinomycetes and corynebacteria. J. Gen. Microbiol. 100, 221–230.

    Article  CAS  PubMed  Google Scholar 

  • Denner, E.B., Smith, G.W., Busse, H.J., Schumann, P., Narzt, T., Polson, S.W., Lubitz, W., and Richardson, L.L. 2003. Aurantimonas coralicida gen. nov., sp. nov., the causative agent of white plague type II on Caribbean scleractinian corals. Int. J. Syst. Evol. Microbiol. 53, 1115–1122.

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.

    Article  Google Scholar 

  • Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416.

    Article  Google Scholar 

  • Gonzalez, C., Gutierrez, C., and Ramirez, C. 1978. Halobacterium vallismortis sp. nov., an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can. J. Microbiol. 24, 710–715.

    Article  CAS  PubMed  Google Scholar 

  • Guo, L., Tuo, L., Habden, X., Zhang, Y., Liu, J., Jiang, Z., Liu, S., Dilbar, T., and Sun, C. 2015. Allosalinactinospora lopnorensis gen. nov., sp. nov., a new member of the family Nocardiopsaceae isolated from soil. Int. J. Syst. Evol. Microbiol. 65, 206–213.

    Article  CAS  PubMed  Google Scholar 

  • Kelly, K.L. 1964. Inter-society color council-national bureau of standards color name charts illustrated with centroid colors. US Government Printing Office, Washington, DC, USA.

    Google Scholar 

  • Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequence. J. Mol. Evol. 16, 111–120.

    Article  CAS  Google Scholar 

  • Li, W.J., Xu, P., Schumann, P., Zhang, Y.Q., Pukall, R., Xu, L.H., Stackebrandt, E., and Jiang, C.L. 2007. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int. J. Syst. Evol. Microbiol. 57, 1424–1428.

    Article  PubMed  Google Scholar 

  • Liang, J., Liu, J., and Zhang, X.H. 2015. Jiella aquimaris gen. nov., sp. nov., isolated from offshore surface seawater. Int. J. Syst. Evol. Microbiol. 65, 1127–1132.

    Article  CAS  PubMed  Google Scholar 

  • Magee, C.M., Rodeheaver, G., Edgerton, M.T., and Edlich, R.F. 1975. A more reliable Gram staining technic for diagnosis of surgical infections. Am. J. Surg. 130, 341–346.

    Article  CAS  PubMed  Google Scholar 

  • Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.

    Article  CAS  Google Scholar 

  • Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P., and Tyson, G.W. 2015. Check M: assessing the quality of microbial genomes recovered from isolateds, single cells, and metagenomes. Genome Res. 25, 1043–1055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin, S., Wang, H.B., Chen, H.H., Zhang, Y.Q., Jiang, C.L., Xu, L.H., and Li, W.J. 2008. Glycomyces endophyticus sp. nov., an endophytic actinomycete isolated from the root of Carex baccans Nees. Int. J. Syst. Evol. Microbiol. 58, 2525–2528.

    Article  CAS  PubMed  Google Scholar 

  • Rathsack, K., Reitner, J., Stackebrandt, E., and Tindall, B.J. 2011. Reclassification of Aurantimonas altamirensis (Jurado et al. 2006), Aurantimonas ureilytica (Weon et al. 2007) and Aurantimonas frigidaquae (Kim et al. 2008) as members of a new genus, Aureimonas gen.nov., as Aureimonas altamirensis gen. nov., comb. nov., Aureimonas ureilytica comb. nov. and Aureimonas frigidaquae comb. nov., and emended descriptions of the genera Aurantimonas and Fulvimarina. Int. J. Syst. Evol. Microbiol. 61, 2722–2728.

    Article  CAS  PubMed  Google Scholar 

  • Ren, F., Zhang, L., Song, L., Xu, S., Xi, L., Huang, L., Huang, Y., and Dai, X. 2014. Fulvimarina manganoxydans sp. nov., isolated from a deep-sea hydrothermal plume in the south-west Indian ocean. Int. J. Syst. Evol. Microbiol. 64, 2920–2925.

    Article  CAS  PubMed  Google Scholar 

  • Richter, M. and Rosselló-Móra, R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 106, 19126–19131.

    Article  PubMed  Google Scholar 

  • Rivas, R., Sánchez-Márquez, S., Mateos, P.F., Martínez-Molina, E., and Velázquez, E. 2005. Martelella mediterranea gen. nov., sp. nov., a novel alpha-proteobacterium isolated from a subterranean saline lake. Int. Syst. Evol. Microbiol. 55, 955–959.

    Article  CAS  Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. MIDI Inc. Newark, DE, USA.

    Google Scholar 

  • Schleifer, K.H. and Kandler, O. 1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36, 407–477.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shirling, E.B. and Gottlieb, D. 1966. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16, 313–340.

    Article  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, P., Li, W.J., Tang, S.K., Zhang, Y.Q., Chen, G.Z., Chen, H.H., Xu, L.H., and Jiang, C.L. 2005. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int. J. Syst. Evol. Microbiol. 55, 1149–1153.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (NSFC, Grant no. 81603079), Science and Technology Foundation of Guizhou Province (No. Qian Ke He Jichu[2019]1347) and Youth Science and technology personnal growth project of Guizhou Provincial Education Department (No. Qian Jiao He KY Zi[2016]200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Tuo.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuo, L., Yan, XR. Fulvimarina endophytica sp. nov., a novel endophytic bacterium isolated from bark of Sonneratia caseolaris. J Microbiol. 57, 655–660 (2019). https://doi.org/10.1007/s12275-019-8627-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-019-8627-4

Keywords

Navigation