Skip to main content
Log in

Spectral and structural analysis of large Stokes shift fluorescent protein dKeima570

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The Keima family comprises large Stokes shifts fluorescent proteins, which are useful for dual-color fluorescence crosscorrelation spectroscopy and multicolor imaging. dKeima570 belongs to the Keima family. It has a unique chromophore sequence composed of CYG with an emission peak at 570 nm, but its molecular properties are unclear. We report the spectral analysis of dKeima570 and its crystal structure at 2.0 Å resolution. The dKeima570 chromophore is mainly in the protonation state in the entire pH range. The pH-induced non-fluorescence state was observed below pH 4.0. The crystal structure of the dKeima570 chromophore has a cis conformation at pH 6.5. The chromophore is surrounded by a unique hydrogen bonding network containing a water bridge between Glu212 and Arg194. The analysis of the dimeric interface of dKeima570 revealed the key residues that maintain the oligomerization of Keima family. Structural comparisons of dKeima570 and mKeima provided insights into the unique large Stokes shifts characteristics of the Keima family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., et al. 2010. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bae, J.E., Kim, I.J., and Nam, K.H. 2017. Disruption of the hydrogen bonding network determines the pH-induced non-fluorescent state of the fluorescent protein ZsYellow by protonation of Glu221. Biochem. Biophys. Res. Commun. 493, 562–567.

    Article  PubMed  CAS  Google Scholar 

  • Bae, J.E., Kim, I.J., and Nam, K.H. 2018. Spectroscopic analysis of the Cu2+-induced fluorescence quenching of fluorescent proteins AmCyan and mOrange2. Mol. Biotechnol. 60, 485–491.

    Article  PubMed  CAS  Google Scholar 

  • Brakemann, T., Weber, G., Andresen, M., Groenhof, G., Stiel, A.C., Trowitzsch, S., Eggeling, C., Grubmuller, H., Hell, S.W., Wahl, M.C., et al. 2010. Molecular basis of the light-driven switching of the photochromic fluorescent protein Padron. J. Biol. Chem. 285, 14603–14609.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, V. B., Arendall 3rd, W.B., Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, J.S., and Richardson, D.C. 2010. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21.

    Article  PubMed  CAS  Google Scholar 

  • Day, R.N. and Davidson, M.W. 2009. The fluorescent protein palette: tools for cellular imaging. Chem. Soc. Rev. 38, 2887–2921.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Emsley, P. and Cowtan, K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, J.N., Osborn, M.F., Koon, N., Gepshtein, R., Huppert, D., and Remington, S.J. 2009. Excited state proton transfer in the red fluorescent protein mKeima. J. Am. Chem. Soc. 131, 13212–13213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Higashino, A., Mizuno, M., and Mizutani, Y. 2016. Chromophore structure of photochromic fluorescent protein Dronpa: Acid-base equilibrium of two Cis configurations. J. Phys. Chem. B 120, 3353–3359.

    Article  PubMed  CAS  Google Scholar 

  • Jung, G., Wiehler, J., and Zumbusch, A. 2005. The photophysics of green fluorescent protein: influence of the key amino acids at positions 65, 203, and 222. Biophys. J. 88, 1932–1947.

    Article  PubMed  CAS  Google Scholar 

  • Kim, I.J., Kim, S., Park, J., Eom, I., Kim, S., Kim, J.H., Ha, S.C., Kim, Y.G., Hwang, K.Y., and Nam, K.H. 2016. Crystal structures of Dronpa complexed with quenchable metal ions provide insight into metal biosensor development. FEBS Lett. 590, 2982–2990.

    Article  PubMed  CAS  Google Scholar 

  • Kogure, T., Karasawa, S., Araki, T., Saito, K., Kinjo, M., and Miyawaki, A. 2006. A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence crosscorrelation spectroscopy. Nat. Biotechnol. 24, 577–581.

    Article  PubMed  CAS  Google Scholar 

  • Kogure, T., Kawano, H., Abe, Y., and Miyawaki, A. 2008. Fluorescence imaging using a fluorescent protein with a large Stokes shift. Methods 45, 223–226.

    Article  PubMed  CAS  Google Scholar 

  • Krissinel, E. and Henrick, K. 2007. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797.

    Article  PubMed  CAS  Google Scholar 

  • Ma, X., Foo, Y.H., and Wohland, T. 2014. Fluorescence cross-correlation spectroscopy (FCCS) in living cells. Methods Mol. Biol. 1076, 557–573.

    Article  PubMed  Google Scholar 

  • Nam, K.H., Kwon, O.Y., Sugiyama, K., Lee, W.H., Kim, Y.K., Song, H.K., Kim, E.E., Park, S.Y., Jeon, H., and Hwang, K.Y. 2007. Structural characterization of the photoswitchable fluorescent protein Dronpa-C62S. Biochem. Biophys. Res. Commun. 354, 962–967.

    Article  PubMed  CAS  Google Scholar 

  • Nienhaus, K., Renzi, F., Vallone, B., Wiedenmann, J., and Nienhaus, G.U. 2006. Chromophore-protein interactions in the anthozoan green fluorescent protein asFP499. Biophys. J. 91, 4210–4220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Otwinowski, Z. and Minor, W. 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326.

    Article  CAS  PubMed  Google Scholar 

  • Park, S.Y., Ha, S.C., and Kim, Y.G. 2017. The protein crystallography beamlines at the Pohang light source II. Biodesign 5, 30–34.

    Google Scholar 

  • Piatkevich, K.D., Malashkevich, V.N., Almo, S.C., and Verkhusha, V.V. 2010. Engineering ESPT pathways based on structural analysis of LSSmKate red fluorescent proteins with large Stokes shift. J. Am. Chem. Soc. 132, 10762–10770.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Remington, S.J. 2011. Green fluorescent protein: a perspective. Protein Sci. 20, 1509–1519.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shcherbakova, D.M., Hink, M.A., Joosen, L., Gadella, T.W., and Verkhusha, V.V. 2012. An orange fluorescent protein with a large Stokes shift for single-excitation multicolor FCCS and FRET imaging. J. Am. Chem. Soc. 134, 7913–7923.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shu, X., Shaner, N.C., Yarbrough, C.A., Tsien, R.Y., and Remington, S.J. 2006. Novel chromophores and buried charges control color in mFruits. Biochemistry 45, 9639–9647.

    Article  PubMed  CAS  Google Scholar 

  • Tsien, R.Y. 1998. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544.

    Article  PubMed  CAS  Google Scholar 

  • Vagin, A. and Teplyakov, A. 2010. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66, 22–25.

    Article  PubMed  CAS  Google Scholar 

  • Violot, S., Carpentier, P., Blanchoin, L., and Bourgeois, D. 2009. Reverse pH-dependence of chromophore protonation explains the large Stokes shift of the red fluorescent protein mKeima. J. Am. Chem. Soc. 131, 10356–10357.

    Article  PubMed  CAS  Google Scholar 

  • Yang, J., Wang, L., Yang, F., Luo, H., Xu, L., Lu, J., Zeng, S., and Zhang, Z. 2013. mBeRFP, an improved large Stokes shift red fluorescent protein. PLoS One 8, e64849.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki Hyun Nam.

Additional information

Supplemental material for this article may be found at https://doi.org/www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Hwang, K.Y. & Nam, K.H. Spectral and structural analysis of large Stokes shift fluorescent protein dKeima570. J Microbiol. 56, 822–827 (2018). https://doi.org/10.1007/s12275-018-8319-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-018-8319-5

Keywords

Navigation