Skip to main content
Log in

Intestinal microbiota and the immune system in metabolic diseases

  • Review
  • Human Microbiomes and Probiotics
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The intestinal microbiota is comprised of millions of microorganisms that reside in the gastrointestinal tract and consistently interact with the host. Host factors such as diet and disease status affect the composition of the microbiota, while the microbiota itself produces metabolites that can further manipulate host physiology. Dysbiosis of the intestinal microbiota has been characterized in patients with certain metabolic diseases, some of which involve damage to the host intestinal epithelial barrier and alterations in the immune system. In this review, we will discuss the consequences of dietdependent bacterial dysbiosis in the gastrointestinal tract, and how the associated interaction with epithelial and immune cells impacts metabolic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Backhed, F., Ding, H., Wang, T., Hooper, L.V., Koh, G.Y., Nagy, A., Semenkovich, C.F., and Gordon, J.I. 2004. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 101, 15718–15723.

    Article  PubMed  PubMed Central  Google Scholar 

  • Backhed, F., Manchester, J.K., Semenkovich, C.F., and Gordon, J.I. 2007. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl. Acad. Sci. USA 104, 979–984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertola, A., Ciucci, T., Rousseau, D., Bourlier, V., Duffaut, C., Bonnafous, S., Blin-Wakkach, C., Anty, R., Iannelli, A., Gugenheim, J., et al. 2012. Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients. Diabetes 61, 2238–2247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brestoff, J.R., Kim, B.S., Saenz, S.A., Stine, R.R., Monticelli, L.A., Sonnenberg, G.F., Thome, J.J., Farber, D.L., Lutfy, K., Seale, P., et al. 2015. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519, 242–246.

    Article  CAS  PubMed  Google Scholar 

  • Buonomo, E.L., Cowardin, C.A., Wilson, M.G., Saleh, M.M., Pramoonjago, P., and Petri, W.A. 2016. Microbiota-regulated IL-25 increases eosinophil number to provide 1 protection during Clostridium difficile infection. Cell Rep. 16, 432–443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caesar, R., Reigstad, C.S., Backhed, H.K., Reinhardt, C., Ketonen, M., Lunden, G.O., Cani, P.D., and Backhed, F. 2012. Gut-derived lipopolysaccharide augments adipose macrophage accumulation but is not essential for impaired glucose or insulin tolerance in mice. Gut 61, 1701–1707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cani, P.D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A.M., Delzenne, N.M., and Burcelin, R. 2008. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in highfat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481.

    Article  CAS  PubMed  Google Scholar 

  • Castoldi, A., Naffah de Souza, C., Camara, N.O., and Moraes-Vieira, P.M. 2015. The macrophage switch in obesity development. Front. Immunol. 6, 637.

    PubMed  Google Scholar 

  • Cavallari, J.F., Denou, E., Foley, K.P., Khan, W.I., and Schertzer, J.D. 2016. Different Th17 immunity in gut, liver, and adipose tissues during obesity: the role of diet, genetics, and microbes. Gut Microbes 7, 82–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chehimi, M., Vidal, H., and Eljaafari, A. 2017. Pathogenic role of IL-17-producing immune cells in obesity, and related inflammatory diseases. J. Clin. Med. 6, 68.

    Article  PubMed Central  Google Scholar 

  • Chen, Y., Tian, J., Tian, X., Tang, X., Rui, K., Tong, J., Lu, L., Xu, H., and Wang, S. 2014. Adipose tissue dendritic cells enhances inflammation by prompting the generation of Th17 cells. PLoS One 9, e92450.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cipolletta, D. 2014. Adipose tissue-resident regulatory T cells: phenotypic specialization, functions and therapeutic potential. Immunology 142, 517–525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cipolletta, D., Feuerer, M., Li, A., Kamei, N., Lee, J., Shoelson, S.E., Benoist, C., and Mathis, D. 2012. PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486, 549–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalmas, E., Venteclef, N., Caer, C., Poitou, C., Cremer, I., Aron-Wisnewsky, J., Lacroix-Desmazes, S., Bayry, J., Kaveri, S.V., Clément, K., et al. 2014. T Cell–derived IL-22 amplifies IL-1β–driven inflammation in human adipose tissue: relevance to obesity and type 2 diabetes. Diabetes 63, 1966–1977.

    Article  CAS  PubMed  Google Scholar 

  • De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J.B., Massart, S., Collini, S., Pieraccini, G., and Lionetti, P. 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA 107, 14691–14696.

    Article  PubMed  PubMed Central  Google Scholar 

  • DeFuria, J., Belkina, A.C., Jagannathan-Bogdan, M., Snyder-Cappione, J., Carr, J.D., Nersesova, Y.R., Markham, D., Strissel, K.J., Watkins, A.A., Zhu, M., et al. 2013. B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile. Proc. Natl. Acad. Sci. USA 110, 5133–5138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding, S., Chi, M.M., Scull, B.P., Rigby, R., Schwerbrock, N.M., Magness, S., Jobin, C., and Lund, P.K. 2010. High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS One 5, e12191.

    Article  PubMed  PubMed Central  Google Scholar 

  • Elgazar-Carmon, V., Rudich, A., Hadad, N., and Levy, R. 2008. Neutrophils transiently infiltrate intra-abdominal fat early in the course of high-fat feeding. J. Lipid Res. 49, 1894–1903.

    Article  CAS  PubMed  Google Scholar 

  • Feuerer, M., Herrero, L., Cipolletta, D., Naaz, A., Wong, J., Nayer, A., Lee, J., Goldfine, A.B., Benoist, C., Shoelson, S., et al. 2009. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15, 930–939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujisaka, S., Usui, I., Bukhari, A., Ikutani, M., Oya, T., Kanatani, Y., Tsuneyama, K., Nagai, Y., Takatsu, K., Urakaze, M., et al. 2009. Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. Diabetes 58, 2574–2582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garidou, L., Pomie, C., Klopp, P., Waget, A., Charpentier, J., Aloulou, M., Giry, A., Serino, M., Stenman, L., Lahtinen, S., et al. 2015. The gut microbiota regulates intestinal CD4 T cells expressing RORgammat and controls metabolic disease. Cell Metab. 22, 100–112.

    Article  CAS  PubMed  Google Scholar 

  • Gerriets, V.A. and MacIver, N.J. 2014. Role of T cells in malnutrition and obesity. Front. Immunol. 5, 379.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guarner, F. and Malagelada, J.R. 2003. Gut flora in health and disease. Lancet 361, 512–519.

    Article  PubMed  Google Scholar 

  • Han, J.L. and Lin, H.L. 2014. Intestinal microbiota and type 2 diabetes: From mechanism insights to therapeutic perspective. World J. Gastroenterol. 20, 17737–17745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hersoug, L.G., Moller, P., and Loft, S. 2016. Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: implications for inflammation and obesity. Obes. Rev. 17, 297–312.

    Article  CAS  PubMed  Google Scholar 

  • Hong, C.P., Park, A., Yang, B.G., Yun, C.H., Kwak, M.J., Lee, G.W., Kim, J.H., Jang, M.S., Lee, E.J., Jeun, E.J., et al. 2017. Gut-specific delivery of T-helper 17 cells reduces obesity and insulin resistance in mice. Gastroenterology 152, 1998–2010.

    Article  CAS  PubMed  Google Scholar 

  • Hooper, L.V., Littman, D.R., and Macpherson, A.J. 2012. Interactions between the microbiota and the immune system. Science 336, 1268–1273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, E., Perrard, X.D., Yang, D., Khan, I.M., Perrard, J.L., Smith, C.W., Ballantyne, C.M., and Wu, H. 2014. Essential role of CD11a in CD8+ T-cell accumulation and activation in adipose tissue. Arterioscler. Thromb. Vasc. Biol. 34, 34–43.

    Article  CAS  PubMed  Google Scholar 

  • Jin, C., Henao-Mejia, J., and Flavell, R.A. 2013. Innate immune receptors: Key regulators of metabolic disease progression. Cell Metab. 17, 873–882.

    Article  CAS  PubMed  Google Scholar 

  • Kim, K.A., Gu, W., Lee, I.A., Joh, E.H., and Kim, D.H. 2012. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS One 7, e47713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klose, C.S.N. and Artis, D. 2016. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat. Immunol. 17, 765–774.

    Article  CAS  PubMed  Google Scholar 

  • Komai-Koma, M., Gilchrist, D.S., and Xu, D. 2009. Direct recognition of LPS by human but not murine CD8+ T cells via TLR4 complex. Eur. J. Immunol. 39, 1564–1572.

    Article  CAS  PubMed  Google Scholar 

  • Lam, Y.Y., Ha, C.W., Campbell, C.R., Mitchell, A.J., Dinudom, A., Oscarsson, J., Cook, D.I., Hunt, N.H., Caterson, I.D., Holmes, A.J., et al. 2012. Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS One 7, e34233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence, T. and Natoli, G. 2011. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat. Rev. Immunol. 11, 750–761.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y.K. and Mazmanian, S.K. 2010. Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 330, 1768–1773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ley, R.E., Turnbaugh, P.J., Klein, S., and Gordon, J.I. 2006. Microbial ecology: Human gut microbes associated with obesity. Nature 444, 1022–1023.

    Article  CAS  PubMed  Google Scholar 

  • Luck, H., Tsai, S., Chung, J., Clemente-Casares, X., Ghazarian, M., Revelo, X.S., Lei, H., Luk, C.T., Shi, S.Y., Surendra, A., et al. 2015. Regulation of obesity-related insulin resistance with gut antiinflammatory agents. Cell Metab. 21, 527–542.

    Article  CAS  PubMed  Google Scholar 

  • Molofsky, A.B., Nussbaum, J.C., Liang, H.E., Van Dyken, S.J., Cheng, L.E., Mohapatra, A., Chawla, A., and Locksley, R.M. 2013. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 210, 535–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moro, K. and Koyasu, S. 2015. Innate lymphoid cells, possible interaction with microbiota. Semin. Immunopathol. 37, 27–37.

    Article  CAS  PubMed  Google Scholar 

  • Murphy, E.A., Velazquez, K.T., and Herbert, K.M. 2015. Influence of high-fat diet on gut microbiota: a driving force for chronic disease risk. Curr. Opin. Clin. Nutr. Metab. Care 18, 515–520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura, S., Manabe, I., Nagasaki, M., Eto, K., Yamashita, H., Ohsugi, M., Otsu, M., Hara, K., Ueki, K., Sugiura, S., et al. 2009. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med. 15, 914–920.

    Article  CAS  PubMed  Google Scholar 

  • O’Neill, L.A. and Pearce, E.J. 2016. Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 213, 15–23.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Rourke, R.W. and Lumeng, C.N. 2013. Obesity heats up adipose tissue lymphocytes. Gastroenterology 145, 282–285.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Rourke, R.W., White, A.E., Metcalf, M.D., Winters, B.R., Diggs, B.S., Zhu, X., and Marks, D.L. 2012. Systemic inflammation and insulin sensitivity in obese IFN-γ knockout mice. Metabolism 61, 1152–1161.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Sullivan, T.E., Rapp, M., Fan, X., Weizman, O.E., Bhardwaj, P., Adams, N.M., Walzer, T., Dannenberg, A.J., and Sun, J.C. 2016. Adipose-resident group 1 innate lymphoid cells promote obesity-associated insulin resistance. Immunity 45, 428–441.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ridaura, V.K., Faith, J.J., Rey, F.E., Cheng, J., Duncan, A.E., Kau, A.L., Griffin, N.W., Lombard, V., Henrissat, B., Bain, J.R., et al. 2013. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214.

    Article  PubMed  Google Scholar 

  • Shen, W., Wolf, P.G., Carbonero, F., Zhong, W., Reid, T., Gaskins, H.R., and McIntosh, M.K. 2014. Intestinal and systemic inflammatory responses are positively associated with sulfidogenic bacteria abundance in high-fat-fed male C57BL/6J mice. J. Nutr. 144, 1181–1187.

    Article  CAS  PubMed  Google Scholar 

  • Smith, K., McCoy, K.D., and Macpherson, A.J. 2007. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin. Immunol. 19, 59–69.

    Article  CAS  PubMed  Google Scholar 

  • Soler-Rodriguez, A.M., Zhang, H., Lichenstein, H.S., Qureshi, N., Niesel, D.W., Crowe, S.E., Peterson, J.W., and Klimpel, G.R. 2000. Neutrophil activation by bacterial lipoprotein versus lipopolysaccharide: Differential requirements for serum and CD14. J. Immunol. 164, 2674–2683.

    Article  CAS  PubMed  Google Scholar 

  • Sonnenberg, G.F. and Artis, D. 2015. Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat. Med. 21, 698–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spits, H., Artis, D., Colonna, M., Diefenbach, A., Di Santo, J.P., Eberl, G., Koyasu, S., Locksley, R.M., McKenzie, A.N., Mebius, R.E., et al. 2013. Innate lymphoid cells—a proposal for uniform nomenclature. Nat. Rev. Immunol. 13, 145–149.

    Article  CAS  PubMed  Google Scholar 

  • Spits, H., Bernink, J.H., and Lanier, L. 2016. NK cells and type 1 innate lymphoid cells: partners in host defense. Nat. Immunol. 17, 758–764.

    Article  CAS  PubMed  Google Scholar 

  • Stefanovic-Racic, M., Yang, X., Turner, M.S., Mantell, B.S., Stolz, D.B., Sumpter, T.L., Sipula, I.J., Dedousis, N., Scott, D.K., Morel, P.A., et al. 2012. Dendritic cells promote macrophage infiltration and comprise a substantial proportion of obesity-associated increases in CD11c+ cells in adipose tissue and liver. Diabetes 61, 2330–2339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strissel, K.J., DeFuria, J., Shaul, M.E., Bennett, G., Greenberg, A.S., and Obin, M.S. 2010. T-cell recruitment and Th1 polarization in adipose tissue during diet-induced obesity in C57BL/6 mice. Obesity (Silver Spring) 18, 1918–1925.

    Article  CAS  Google Scholar 

  • Sumarac-Dumanovic, M., Stevanovic, D., Ljubic, A., Jorga, J., Simic, M., Stamenkovic-Pejkovic, D., Starcevic, V., Trajkovic, V., and Micic, D. 2009. Increased activity of interleukin-23/interleukin-17 proinflammatory axis in obese women. Int. J. Obes. (Lond) 33, 151–156.

    Article  CAS  Google Scholar 

  • Talukdar, S., Oh, D.Y., Bandyopadhyay, G., Li, D., Xu, J., McNelis, J., Lu, M., Li, P., Yan, Q., Zhu, Y., et al. 2012. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat. Med. 18, 1407–1412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, W.H., Kitai, T., and Hazen, S.L. 2017. Gut microbiota in cardiovascular health and disease. Circ. Res. 120, 1183–1196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thaiss, C.A., Zmora, N., Levy, M., and Elinav, E. 2016. The microbiome and innate immunity. Nature 535, 65–74.

    Article  CAS  PubMed  Google Scholar 

  • Tremaroli, V. and Backhed, F. 2012. Functional interactions between the gut microbiota and host metabolism. Nature 489, 242–249.

    Article  CAS  PubMed  Google Scholar 

  • Turnbaugh, P.J., Backhed, F., Fulton, L., and Gordon, J.I. 2008. Dietinduced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uysal, K.T., Wiesbrock, S.M., Marino, M.W., and Hotamisligil, G.S. 1997. Protection from obesity-induced insulin resistance in mice lacking TNF-a function. Nature 389, 610–614.

    Article  CAS  PubMed  Google Scholar 

  • van der Heijden, R.A., Sheedfar, F., Morrison, M.C., Hommelberg, P.P., Kor, D., Kloosterhuis, N.J., Gruben, N., Youssef, S.A., de Bruin, A., Hofker, M.H., et al. 2015. High-fat diet induced obesity primes inflammation in adipose tissue prior to liver in C57BL/6j mice. Aging (Albany NY) 7, 256–268.

    Article  Google Scholar 

  • van Nuenen, M.H.M.C., de Ligt, R.A.F., Doornbos, R.P., van der Woude, J.C.J., Kuipers, E.J., and Venema, K. 2005. The influence of microbial metabolites on human intestinal epithelial cells and macrophages in vitro. FEMS Immunol. Med. Microbiol. 45, 183–189.

    Article  PubMed  Google Scholar 

  • Wagner, N.M., Brandhorst, G., Czepluch, F., Lankeit, M., Eberle, C., Herzberg, S., Faustin, V., Riggert, J., Oellerich, M., Hasenfuss, G., et al. 2013. Circulating regulatory T cells are reduced in obesity and may identify subjects at increased metabolic and cardiovascular risk. Obesity (Silver Spring) 21, 461–468.

    Article  CAS  Google Scholar 

  • Walker, J.A., Barlow, J.L., and McKenzie, A.N. 2013. Innate lymphoid cells–how did we miss them? Nat. Rev. Immunol. 13, 75–87.

    Article  CAS  Google Scholar 

  • Wang, Z., Klipfell, E., Bennett, B.J., Koeth, R., Levison, B.S., DuGar, B., Feldstein, A.E., Britt, E.B., Fu, X., Chung, Y.M., et al. 2011. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Ota, N., Manzanillo, P., Kates, L., Zavala-Solorio, J., Eidenschenk, C., Zhang, J., Lesch, J., Lee, W.P., Ross, J., et al. 2014. Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes. Nature 514, 237–241.

    Article  CAS  PubMed  Google Scholar 

  • Weisberg, S.P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R.L., and Ferrante, A.W. 2003. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winer, S., Chan, Y., Paltser, G., Truong, D., Tsui, H., Bahrami, J., Dorfman, R., Wang, Y., Zielenski, J., Mastronardi, F., et al. 2009. Normalization of obesity-associated insulin resistance through immunotherapy. Nat. Med. 15, 921–929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winer, D.A., Luck, H., Tsai, S., and Winer, S. 2016. The intestinal immune system in obesity and insulin resistance. Cell Metab. 23, 413–426.

    Article  CAS  PubMed  Google Scholar 

  • Winer, D.A., Winer, S., Shen, L., Wadia, P.P., Yantha, J., Paltser, G., Tsui, H., Wu, P., Davidson, M.G., Alonso, M.N., et al. 2011. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat. Med. 17, 610–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, D., Molofsky, A.B., Liang, H.E., Ricardo-Gonzalez, R.R., Jouihan, H.A., Bando, J.K., Chawla, A., and Locksley, R.M. 2011. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332, 243–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, H.J. and Wu, E. 2012. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 3, 4–14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamashiro, K., Tanaka, R., Urabe, T., Ueno, Y., Yamashiro, Y., Nomoto, K., Takahashi, T., Tsuji, H., Asahara, T., and Hattori, N. 2017. Gut dysbiosis is associated with metabolism and systemic inflammation in patients with ischemic stroke. PLoS One 12, e0171521.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, J.Y. and Kweon, M.N. 2016. The gut microbiota: a key regulator of metabolic diseases. BMB Rep. 49, 536–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, T., Santisteban, M.M., Rodriguez, V., Li, E., Ahmari, N., Carvajal, J.M., Zadeh, M., Gong, M., Qi, Y., Zubcevic, J., et al. 2015. Gut dysbiosis is linked to hypertension. Hypertension 65, 1331–1340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng, M.Y., Cisalpino, D., Varadarajan, S., Hellman, J., Warren, H.S., Cascalho, M., Inohara, N., and Nunez, G. 2016. Gut microbiotainduced immunoglobulin G controls systemic infection by symbiotic bacteria and pathogens. Immunity 44, 647–658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuge, F., Ni, Y., Nagashimada, M., Nagata, N., Xu, L., Mukaida, N., Kaneko, S., and Ota, T. 2016. DPP-4 inhibition by linagliptin attenuates obesity-related inflammation and insulin resistance by regulating M1/M2 macrophage polarization. Diabetes 65, 2966–2979.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Kyung Lee or Craig L. Maynard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sittipo, P., Lobionda, S., Lee, Y.K. et al. Intestinal microbiota and the immune system in metabolic diseases. J Microbiol. 56, 154–162 (2018). https://doi.org/10.1007/s12275-018-7548-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-018-7548-y

Keywords

Navigation