Skip to main content
Log in

Variation of cassiicolin genes among Chinese isolates of Corynespora cassiicola

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

An Erratum to this article was published on 23 August 2018

This article has been updated

Abstract

Corynespora cassiicola is a species of fungus that is a plant pathogen of many agricultural crop plants, including severe target spot disease on cucumber. Cassiicolin is an important effector of pathogenicity of this fungus. In this study, we collected 141 Corynespora isolates from eighteen hosts, and the casscolin gene was detected in 82 C. cassiicola strains. The deduced protein sequences revealed that 72 isolates contained the Cas2 gene, two strains from Gynura bicolor harboured the Cas2.2 gene, and 59 isolates without a cassiicolin gene were classified as Cas0. Phylogenetic analyses was performed for the 141 isolates using four loci (ITS, ga4, caa5, and act1) and revealed two genetic clusters. Cluster A is composed of four subclades: subcluster A1 includes all Cas2 isolates plus 18 Cas0 strains, subcluster A2 includes the eight Cas5 isolates and one Cas0 isolate, and subclusters A3 and A4 contain Cas0 strains. Cluster B consists of 21 Cas0 isolates. Twenty-two C. cassiicola strains from different toxin classes showed varying degrees of virulence against cucumber. Cas0 or Cas2 strains induced diverse responses on cucumber, from no symptoms to symptoms of moderate or severe infection, but all Cas5 isolates exhibited avirulence on cucumber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 23 August 2018

    In the online published article by Wu <Emphasis Type="Italic">et al.</Emphasis> since 30 July 2018, the figure 4 is unfortunately incorrect. The figure 4 should be corrected as below.

References

  • Barthe, P., Pujade-Renaud, V., Breton, F., Gargani, D., Thai, R., Roumestand, C., and De, L.F. 2007. Structural analysis of cassiicolin, a host-selective protein toxin from Corynespora cassiicola. J. Mol. Biol. 367, 89–101.

    Article  PubMed  CAS  Google Scholar 

  • Bendtsen, J.D., Nielsen, H., Von, H.G., and Brunak, S. 2004. Improved prediction of signal peptides: Signalp 3.0. J. Mol. Biol. 340, 783–795.

    Article  PubMed  CAS  Google Scholar 

  • Cai, L., Ji, K.F., and Hyde, K.D. 2006. Variation between freshwater and terrestrial fungal communities on decaying bamboo culms. Antonie van Leeuwenhoek 89, 293–301.

    Article  PubMed  Google Scholar 

  • Carbone, I. and Kohn, L.M. 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91, 553–556.

    Article  CAS  Google Scholar 

  • De Lamotte, F., Duviau, M.P., Sanier, C., Thai, R., Poncet, J., Bieysse, D., Breton, F., and Pujade-Renaud, V. 2007. Purification and characterization of cassiicolin, the toxin produced by Corynespora cassiicola, causal agent of the leaf fall disease of rubber tree. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 849, 357–362.

    Article  PubMed  CAS  Google Scholar 

  • Déon, M., Bourré, Y., Gimenez, S., Berger, A., Bieysse, D., de Lamotte, F., Poncet, J., Roussel, V., Bonnot, F., Oliver, G., et al. 2012a. Characterization of a cassiicolin-encoding gene from Corynespora cassiicola, pathogen of rubber tree (Hevea brasiliensis). Plant Sci. 185–186, 227–237.

    Article  PubMed  CAS  Google Scholar 

  • Déon, M., Fumanal, B., Gimenez, S., Bieysse, D., Oliveira, R.R., Shuib, S.S., Breton, F., Elumalai, S., Vida, J.B., Seguin, M., et al. 2014. Diversity of the cassiicolin gene in Corynespora cassiicola and relation with the pathogenicity in Hevea brasiliensis. Fungal. Bio-UK 118, 32–47.

    Article  CAS  Google Scholar 

  • Déon, M., Scomparin, A., Tixier, A., Mattos, C.R.R., Leroy, T., Seguin, M., Roeckel-Drevet, P., and Pujade-Renaud, V. 2012b. First characterization of endophytic Corynespora cassiicola isolates with variant cassiicolin genes recovered from rubber trees in Brazil. Fungal. Divers. 54, 87–99.

    Article  Google Scholar 

  • Dixon, L.J., Schlub, R.L., Pernezny, K., and Datnoff, L.E. 2009. Host specialization and phylogenetic diversity of Corynespora cassiicola. Phytopathology 99, 1015–1027.

    Article  PubMed  CAS  Google Scholar 

  • Farr, D.F., Rossman, A.Y., Palm, M.E., and McCray, E.B. 2007. Fungal databases. Systematic Botany and Mycology Laboratory, ARS, USDA. Retrieved Dec 13, from https://doi.org/nt.arsgrin.gov/fungaldatabases/.

    Google Scholar 

  • Fernando, T.H.P.S., Jayasinghe, C.K., Wijesundera, R.L.C., and Siriwardana, D. 2009. Variability of hevea isolates of Corynespora cassiicola from Sri Lanka. J. Plant Dis. Protect. 116, 115–117.

    Article  Google Scholar 

  • Groenewald, S., Van, D.B.N., Marasas, W.F., and Viljoen, A. 2006. The application of high-throughput AFLP’s in assessing genetic diversity in Fusarium oxysporum f. sp. cubense. Mycol. Res. 110, 297–305.

    Article  PubMed  CAS  Google Scholar 

  • Liu, X.M. 2012. Ph. D. thesis. Coloning and functional identification of a mitogen-activated protein kinase gene (CCK1) and toxin encoding gene (ct) of Corynespora cassiicola-the pathogen of Corynespora leaf fall disease of Hevea brassiliensis. Hainan University, Haikou, Hainan, China.

    Google Scholar 

  • Liu, X.B., Li, B.X., Chen, S., and Huang, G.X. 2016. Diversity and pathogenicity of the cassiicolin gene in Corynespora cassiicola of rubber tree in China. Chinese J. Tropic. Crops 37, 1969–1973.

    Google Scholar 

  • Nghia, N.A., Kadir, J., Sunderasan, E., Abdullah, M.P., Malik, A., and Napis, S. 2008. Morphological and inter simple sequence repeat (ISSR) markers analyses of Corynespora cassiicola isolates from rubber plantations in Malaysia. Mycopathologia 166, 189–201.

    Article  PubMed  CAS  Google Scholar 

  • Promputtha, I., Lumyong, S., Dhanasekaran, V., Mckenzie, E.H., Hyde, K.D., and Jeewon, R. 2007. A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb. Ecol. 53, 579–590.

    Article  PubMed  Google Scholar 

  • Qi, Y., Xie, Y., Zhang, X., Pu, J., Zhang, H., Huang, S., and Zhang, H. 2009. Molecular and pathogenic variation identified among isolates of Corynespora cassiicola. Mol. Biotechnol. 41, 145–151.

    Article  PubMed  CAS  Google Scholar 

  • Qi, Y.X., Zhang, X., Pu, J.J., Liu, X.M., Lu, Y., Zhang, H., Zhang, H.Q., Lv, Y.C., and Xie, Y.X. 2011. Morphological and molecular analysis of genetic variability within isolates of Corynespora cassiicola from different hosts. Eur. J. Plant Pathol. 130, 83–95.

    Article  Google Scholar 

  • Saha, T., Kumar, A., Sreena, A.S., Joseph, A., Jacob, C.K., Kothandaraman, R., and Nazeer, M.A. 2000. Genetic variability of Corynespora cassiicola infecting Hevea brasiliensis isolated from the traditional rubber growing areas in India. Indian J. Nat. Rubber Res. 13, 1–10.

    CAS  Google Scholar 

  • Schoch, C.L., Crous, P.W., Groenewald, J.Z., Boehm, E.W., Burgess, T.I., de Gruyter, J., de Hoog, G.S., Dixon, L.J., Grube, M., Gueidan, C., et al. 2009. A class-wide phylogenetic assessment of Dothideomycetes. Stud. Mycol. 64, 1–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shimomoto, Y., Sato, T., Hojo, H., Morita, Y., Takeuchi, S., Mizumoto, H., and Hikichi, Y. 2011. Pathogenic and genetic variation among isolates of Corynespora cassiicola in Japan. Plant Pathol. 60, 253–260.

    Article  CAS  Google Scholar 

  • Shuib, S.S., Deon, M., Mahyuddin, M.M., Izhar, A., Fumanal, B., Sunderasan, E., and Pujade-Renaud, V. 2015. Cassiicolin genes among Corynespora cassiicola isolates from rubber plantations in Malaysia. J. Rubb. Res. 18, 109–126.

    Google Scholar 

  • Silva, W.P.K., Deverall, B.J., and Lyon, B.R. 1998. Molecular, physiological and pathological characterization of Corynespora leaf spot fungi from rubber plantations in Sri Lanka. Plant Pathol. 47, 267–277.

    Article  CAS  Google Scholar 

  • Tamura, K. and Nei, M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526.

    PubMed  CAS  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • White, T.J., Bruns, T.D., Lee, S.B., Taylor, J.W., Innis, M.A., Gelfand, D.H., and Sninsky, J.J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315–322. In Innis, M.A., Gelfand, D.H., Sninsky, J.J., and White, T.J. (eds.), PCR Protocols: A guide to methods and applications. Academic Press Inc., New York, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoju Li.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s12275-018-8580-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Xie, X., Shi, Y. et al. Variation of cassiicolin genes among Chinese isolates of Corynespora cassiicola. J Microbiol. 56, 634–647 (2018). https://doi.org/10.1007/s12275-018-7497-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-018-7497-5

Keywords

Navigation