Skip to main content
Log in

Viridibacterium curvum gen. nov., sp. nov., isolated from freshwater

  • Microbial Systematics and Evolutionary Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

A Gram stain-negative, yellowish green-pigmented, facultatively anaerobic, motile, curved rod-shaped bacterium designated as strain JJ016T was isolated from an artificial lake in South Korea, and characterized using a polyphasic approach. The 16S rRNA gene sequence of strain JJ016T indicated that the isolate belonged to the family Rhodocyclaceae and exhibited 95.0% identity to Uliginosibacterium gangwonense 5YN10-9T. The major cellular fatty acids of the novel strain were summed feature 3 (C16:1 ω6c and/or C16:1 ω7c), C16:0, C14:0, and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). The DNA G+C content of strain JJ016T was 61.9 mol%. The major respiratory quinone and major polar lipid of strain JJ016T were ubiquinone-8 and phosphatidylethanolamine, respectively. Based on the morphological and physiological properties and the biochemical evidence presented, we concluded that strain JJ016T represents a novel species of a new genus in the family Rhodocyclaceae, for which the name Viridibacterium curvum gen. nov., sp. nov. is proposed. The type strain is JJ016T (=KACC 16899T =JCM 18715T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bauer, A.W., Kirby, W.M., Sherris, J.C., and Turck, M. 1966. Antibiotic susceptibility testing by a standardized single disk method. Amer. J. Clin. Pathol. 45, 493.

    CAS  Google Scholar 

  • Bowman, J.P. 2000. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb nov.. Int. J. Syst. Evol. Microbiol. 50, 1861–1868.

    Article  CAS  PubMed  Google Scholar 

  • Chen, W.M., Li, Y.S., Chen, Z.H., Young, C.C., and Sheu, S.Y. 2016. Uliginosibacterium paludis sp. nov., isolated from a marsh. Int. J. Syst. Evol. Microbiol. 66, 5118–5123.

    Article  PubMed  Google Scholar 

  • Chen, M.H., Sheu, S.Y., James, E.K., Young, C.C., and Chen, W.M. 2013. Azoarcus olearius sp. nov. a nitrogen-fixing bacterium isolated from oil-contaminated soil. Int. J. Syst. Evol. Microbiol. 63, 3755–3761.

    Article  CAS  PubMed  Google Scholar 

  • Chun, J., Kang, J.Y., Jung, Y.C., and Jahng, K.Y. 2016. Niveibacterium umoris gen. nov., sp. nov., isolated from wetland freshwater. Int. J. Syst. Evol. Microbiol. 66, 997–1002.

    Article  CAS  Google Scholar 

  • Collins, M. 1985. Isoprenoid quinone analyses in bacterial classification and identification, pp. 267–287. In Goodfellow, M. and Minnikin, D.E. (eds.), Chemical methods in bacterial systematics. Academic, London, UK.

    Google Scholar 

  • Cowan, S.T., Steel, K.J., Barrow, G., and Feltham, R. 2004. Cowan and Steel’s manual for the identification of medical bacteria. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Dubbels, B.L., Sayavedra-Soto, L.A., Bottomley, P.J., and Arp, D.J. 2009. Thauera butanivorans sp. nov., a C2–C9 alkane-oxidizing bacterium previously referred to as Pseudomonas butanovora. Int. J. Syst. Evol. Microbiol. 59, 1576–1578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farkas, M., Táncsics, A., Kriszt, B., Benedek, T., Tóth, E.M., Kéki, Z., Veres, P.G., and Szoboszlay, S. 2015. Zoogloea oleivorans sp. nov., a floc-forming, petroleum hydrocarbon-degrading bacterium isolated from biofilm. Int. J. Syst. Evol. Microbiol. 65, 274–279.

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.

    Article  PubMed  Google Scholar 

  • Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Biol. 20, 406.

    Article  Google Scholar 

  • Foss, S. and Harder, J. 1998. Thauera linaloolentis sp. nov. and Thauera terpenica sp. nov., isolated on oxygen-containing monoterpenes (linalool, menthol, and eucalyptol) and nitrate. Syst. Appl. Microbiol. 21, 365–373.

    Article  CAS  PubMed  Google Scholar 

  • Gomori, G. 1955. Preparation of buffers for use in enzyme studies. Meth. Enzymol. 1, 138–146.

    Article  CAS  Google Scholar 

  • Heider, J. and Fuchs, G. 2005. Genus XI. Thauera. Bergey’s Manual of Systematic Bacteriology 2, 907–913.

    Article  Google Scholar 

  • Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716–721.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.

    Article  CAS  PubMed  Google Scholar 

  • Macy, J., Rech, S., Auling, G., Dorsch, M., Stackebrandt, E., and Sly, L. 1993. Thauera selenatis gen. nov., sp. nov., a member of the beta subclass of Proteobacteria with a novel type of anaerobic respiration. Int. J. Syst. Bacteriol. 43, 135–142.

    Article  CAS  PubMed  Google Scholar 

  • Marchesi, J.R., Sato, T., Weightman, A.J., Martin, T.A., Fry, J.C., Hiom, S.J., and Wade, W.G. 1998. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microbiol. 64, 795–799.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mechichi, T., Stackebrandt, E., Gad’on, N., and Fuchs, G. 2002. Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp. nov., Thauera aminoaromatica sp. nov., and Azoarcus buckelii sp. nov. Arch. Microbiol. 178, 26–35.

    Article  CAS  PubMed  Google Scholar 

  • Minnikin, D., O’donnell, A., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.

    Article  CAS  Google Scholar 

  • Mohn, W.W., Wilson, A.E., Bicho, P., and Moore, E.R. 1999. Physiological and phylogenetic diversity of bacteria growing on resin acids. Syst. Appl. Microbiol. 22, 68–78.

    Article  CAS  PubMed  Google Scholar 

  • Reinhold-Hurek, B., Hurek, T., Gillis, M., Hoste, B., Vancanneyt, M., Kersters, K., and De Ley, J. 1993. Azoarcus gen. nov., nitrogenfixing proteobacteria associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth), and description of two species, Azoarcus indigens sp. nov. and Azoarcus communis sp. nov. Int. J. Syst. Bacteriol. 43, 574–584.

    Article  Google Scholar 

  • Reinhold-Hurek, B., Tan, Z., and Hurek, T. 2005. Genus II. Azoarcus. Bergey’s Manual of Systematic Bacteriology 2, 890–901.

    Article  Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Shao, Y., Chung, B.S., Lee, S.S., Park, W., Lee, S.S., and Jeon, C.O. 2009. Zoogloea caeni sp. nov., a floc-forming bacterium isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 59, 526–530.

    Article  CAS  PubMed  Google Scholar 

  • Shin, Y.K., Hiraishi, A., and Sugiyama, J. 1993. Molecular systematics of the genus Zoogloea and emendation of the genus. Int. J. Syst. Bacteriol. 43, 826–831.

    Article  CAS  PubMed  Google Scholar 

  • Tamaoka, J., Katayama-Fujimura, Y., and Kuraishi, H. 1983. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J. Appl. Microbiol. 54, 31–36.

    CAS  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson, J.D., Gibson, T.J., Frédéric, P., François, J., and Higgins, D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tittsler, R.P. and Sandholzer, L.A. 1936. The use of semi-solid agar for the detection of bacterial motility. J. Bacteriol. 31, 575–580.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Unz, R.F. 2005. Genus XII. Zoogloea, Bergey’s Manual of Systematic Bacteriology 2, 913–922.

    Article  Google Scholar 

  • Weon, H.Y., Kim, B.Y., Yoo, S.H., Kwon, S.W., Go, S.J., and Stackebrandt, E. 2008. Uliginosibacterium gangwonense gen. nov., sp. nov., isolated from a wetland, Yongneup, in Korea. Int. J. Syst. Evol. Microbiol. 58, 131–135.

    Article  CAS  PubMed  Google Scholar 

  • Xie, C.H. and Yokota, A. 2006. Zoogloea oryzae sp. nov., a nitrogenfixing bacterium isolated from rice paddy soil, and reclassification of the strain ATCC 19623 as Crabtreella saccharophila gen. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 56, 619–624.

    Article  CAS  PubMed  Google Scholar 

  • Yang, G.Q., Zhang, J., Kwon, S.W., Zhou, S.G., Han, L.C., Chen, M., Ma, C., and Zhuang, L. 2013. Thauera humireducens sp. nov., a humus-reducing bacterium isolated from a microbial fuel cell. Int. J. Syst. Evol. Microbiol. 63, 873–878.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang Yeop Jahng.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

The GenBank accession number for the 16S rRNA gene sequence of strain JJ016T is JN712181.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J.Y., Chun, J., Jung, Y.C. et al. Viridibacterium curvum gen. nov., sp. nov., isolated from freshwater. J Microbiol. 55, 514–519 (2017). https://doi.org/10.1007/s12275-017-7003-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-017-7003-5

Keywords

Navigation