Skip to main content
Log in

The effect of the cwf14 gene of fission yeast on cell wall integrity is associated with rho1

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

In all eukaryotic organisms, a wide range of morphologies are responsible for critical cellular function and development. In particular, the Rho GTPases, which are highly conserved from yeast to mammals, are key molecules in signaling pathways that control cell polarity processes and cell wall biosynthesis, which are fundamental aspects of morphogenesis. Therefore, using haploinsufficiency deletion mutants of the fission yeast Schizosaccharomyces pombe, we screened the slow-growing mutants and their morphogenesis, specifically focusing on regulation of their Rho GTPases. Based on this screening, we found that the cwf14 mutant of S. pombe exhibited the slow growth and abnormal phenotypes with an elongated cell shape and thicker cell wall when compared with wild-type cells. In particular, cells with the cwf14 deletion showed excessive Rho1 expression. However, the wildtype strain with ectopically expressed Rho1 did not exhibited any significant change in the level of cwf14, suggesting that cwf14 may act on the upstream of Rho1. Furthermore, the cells with a cwf14 deletion also have increased sensitivity to β-glucanase, a cell wall-digesting enzyme, which is also seen in Rho1-overexpressing cells. Overall, our results suggest that the cwf14 plays a key role in fission yeast morphogenesis and cell wall biosynthesis and/or degradation possibly via the regulation of Rho1 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arellano, M., Duran, A., and Perez, P. 1996. Rho 1 GTPase activates the (1-3)β-D-glucan synthase and is involved in Schizosaccharomyces pombe morphogenesis. EMBO J. 15, 4584–4591.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cabib, E., Drgonova, J., and Drgon, T. 1998. Role of small G proteins in yeast cell polarization and wall biosynthesis. Annu. Rev. Biochem. 67, 307–333.

    Article  CAS  PubMed  Google Scholar 

  • Carnahan, R.H., Feoktistova, A., Ren, L., Niessen, S., Yates, J.R., and Gould, K.L. 2005. Dim1p is required for efficient splicing and export of mRNA encoding lid1p, a component of the fission yeast anaphase-promoting complex. Eukaryot. Cell 4, 577–587.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chant, J. and Stowers, L. 1995. GTPase cascades choreographing cellular behavior: movement, morphogenesis, and more. Cell 81, 1–4.

    Article  CAS  PubMed  Google Scholar 

  • Forsburg, S.L. 1993. Comparison of Schizosaccharomyces pombe expression systems. Nucleic Acids Res. 21, 2955–2956.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Forsburg, S.L. and Rhind, N. 2006. Basic methods for fission yeast. Yeast 23, 173–183.

    Article  CAS  PubMed  Google Scholar 

  • Forsburg, S.L. and Sherman, D.A. 1997. General purpose tagging vectors for fission yeast. Gene 191, 191–195.

    Article  CAS  PubMed  Google Scholar 

  • Garcia, P., Tajadura, V., Garcia, I., and Sanchez, Y. 2006a. Rgf1p is a specific Rho1-GEF that coordinates cell polarization with cell wall biogenesis in fission yeast. Mol. Biol. Cell. 17, 1620–1631.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garcia, P., Tajadura, V., Garcia, I., and Sanchez, Y. 2006b. Role of Rho GTPases and Rho-GEFs in the regulation of cell shape and integrity in fission yeast. Yeast 23, 1031–1043.

    Article  CAS  PubMed  Google Scholar 

  • Gould, K.L. and Simanis, V. 1997. The control of septum formation in fission yeast. Genes Dev. 11, 2939–2951.

    Article  CAS  PubMed  Google Scholar 

  • Guertin, D.A., Trautmann, S., and McCollum, D. 2002. Cytokinesis in eukaryotes. Microbiol. Mol. Biol. Rev. 66, 155–178.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hayles, J., Wood, V., Jeffery, L., Hoe, K.L., Kim, D.U., Park, H.O., Salas-Pino, S., Heichinger, C., and Nurse, P. 2013. A genome-wide resource of cell cycle and cell shape genes of fission yeast. Open Biol. 3, 130053.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hla, T., Jackson, A.Q., Appleby, S.B., and Maciag, T. 1995. Characterization of edg-2, a human homologue of the Xenopus maternal transcript G10 from endothelial cells. Biochim. Biophys. Acta. 1260, 227–229.

    Article  PubMed  Google Scholar 

  • Humbel, B.M., Konomi, M., Takagi, T., Kamasawa, N., Ishijima, S.A., and Osumi, M. 2001. In situ localization of β-glucans in the cell wall of Schizosaccharomyces pombe. Yeast 18, 433–444.

    Article  CAS  PubMed  Google Scholar 

  • Imamura, H., Tanaka, K., Hihara, T., Umikawa, M., Kamei, T., Takahashi, K., Sasaki, T., and Takai, Y. 1997. Bni1p and Bnr1p: downstream targets of the Rho family small G-proteins which interact with profilin and regulate actin cytoskeleton in Saccharomyces cerevisiae. EMBO J. 16, 2745–2755.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Inoue, S.B., Takewaki, N., Takasuka, T., Mio, T., Adachi, M., Fujii, Y., Miyamoto, C., Arisawa, M., Furuichi, Y., and Watanabe, T. 1995. Characterization and gene cloning of 1,3-β-D-glucan synthase from Saccharomyces cerevisiae. Eur. J. Biochem. 231, 845–854.

    Article  CAS  PubMed  Google Scholar 

  • Kallgren, S.P., Andrews, S., Tadeo, X., Hou, H., Moresco, J.J., Tu, P.G., Yates, J.R., Nagy, P.L., and Jia, S. 2014. The proper splicing of RNAi factors is critical for pericentric heterochromatin assembly in fission yeast. PLoS Genet. 10, e1004334.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kang, M.S. and Cabib, E. 1986. Regulation of fungal cell wall growth: a guanine nucleotide-binding, proteinaceous component required for activity of (1,3)-β-D-glucan synthase. Proc. Natl. Acad. Sci. USA 83, 5808–5812.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim, D.U., Hayles, J., Kim, D., Wood, V., Park, H.O., Won, M., Yoo, H.S., Duhig, T., Nam, M., Palmer, G., et al. 2010. Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat. Biotechnol. 28, 617–623.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lamarche, N. and Hall, A. 1994. GAPs for rho-related GTPases. Trends Genet. 10, 436–440.

  • Levin, D.E. 2005. Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 69, 262–291.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Masciadri, B., Areces, L.B., Carpinelli, P., Foiani, M., Draetta, G., and Fiore, F. 2004. Characterization of the BUD31 gene of Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 320, 1342–1350.

    Article  CAS  PubMed  Google Scholar 

  • Mol, P.C., Park, H.M., Mullins, J.T., and Cabib, E. 1994. A GTP-binding protein regulates the activity of (1→3)-β-glucan synthase, an enzyme directly involved in yeast cell wall morphogenesis. J. Biol. Chem. 269, 31267–31274.

    CAS  PubMed  Google Scholar 

  • Nurse, P. 1994. Fission yeast morphogenesis-posing the problems. Mol. Biol. Cell. 5, 613–616.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ohi, M.D., Link, A.J., Ren, L., Jennings, J.L., McDonald, W.H., and Gould, K.L. 2002. Proteomics analysis reveals stable multiprotein complexes in both fission and budding yeasts containing Mybrelated Cdc5p/Cef1p, novel pre-mRNA splicing factors, and snRNAs. Mol. Cell Biol. 22, 2011–2024.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palazzolo, M.J., Hamilton, B.A., Ding, D.L., Martin, C.H., Mead, D.A., Mierendorf, R.C., Raghavan, K.V., Meyerowitz, E.M., and Lipshitz, H.D. 1990. Phage lambda cDNA cloning vectors for subtractive hybridization, fusion-protein synthesis and Cre-loxP automatic plasmid subcloning. Gene 88, 25–36.

    Article  CAS  PubMed  Google Scholar 

  • Saha, D., Banerjee, S., Bashir, S., and Vijayraghavan, U. 2012. Context dependent splicing functions of Bud31/Ycr063w define its role in budding and cell cycle progression. Biochem. Biophys. Res. Commun. 424, 579–585.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Mir, L., Soto, T., Franco, A., Madrid, M., Viana, R.A., Vicente, J., Gacto, M., Perez, P., and Cansado, J. 2014. Rho1 GTPase and PKC ortholog Pck1 are upstream activators of the cell integrity MAPK pathway in fission yeast. PLoS One 9, e88020.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sherman, F. 2002. Getting started with yeast. Methods Enzymol. 350, 3–41.

    Article  CAS  PubMed  Google Scholar 

  • Villalonga, P. and Ridley, A.J. 2006. Rho GTPases and cell cycle control. Growth Factors 24, 159–164.

    Article  CAS  PubMed  Google Scholar 

  • Von Borstel, R.C. 1969. Yeast genetics. Science 163, 962–964.

    Article  CAS  PubMed  Google Scholar 

  • Winzeler, E.A., Shoemaker, D.D., Astromoff, A., Liang, H., Anderson, K., Andre, B., Bangham, R., Benito, R., Boeke, J.D., Bussey, H., et al. 1999. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sook-Jeong Lee or Kwang-Lae Hoe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, DU., Maeng, S., Lee, H. et al. The effect of the cwf14 gene of fission yeast on cell wall integrity is associated with rho1. J Microbiol. 54, 98–105 (2016). https://doi.org/10.1007/s12275-016-5569-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-016-5569-y

Keywords

Navigation