Skip to main content
Log in

Kinetic characterization of a novel acid ectophosphatase from Enterobacter asburiae

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Expression of acid ectophosphatase by Enterobacter asburiae, isolated from Cattleya walkeriana (Orchidaceae) roots and identified by the 16S rRNA gene sequencing analysis, was strictly regulated by phosphorus ions, with its optimal activity being observed at an inorganic phosphate concentration of 7 mM. At the optimum pH 3.5, intact cells released p-nitrophenol at a rate of 350.76 ± 13.53 nmol of p-nitrophenolate (pNP)/min/108 cells. The membrane-bound enzyme was obtained by centrifugation at 100,000 × g for 1 h at 4°C. p-Nitrophenylphosphate (pNPP) hydrolysis by the enzyme follows “Michaelis-Menten” kinetics with V = 61.2 U/mg and K0.5 = 60 μM, while ATP hydrolysis showed V = 19.7 U/mg, K0.5 = 110 μM, and nH = 1.6 and pyrophosphate hydrolysis showed V = 29.7 U/mg, K0.5 = 84 μM, and nH = 2.3. Arsenate and phosphate were competitive inhibitors with K i = 0.6 mM and K i = 1.8 mM, respectively. p-Nitrophenyl phosphatase (pNPPase) activity was inhibited by vanadate, while p-hydroxymercuribenzoate, EDTA, calcium, copper, and cobalt had no inhibitory effects. Magnesium ions were stimulatory (K0.5 = 2.2 mM and nH = 0.5). Production of an acid ectophosphatase can be a mechanism for the solubilization of mineral phosphates by microorganisms such as Enterobacter asburiae that are versatile in the solubilization of insoluble minerals, which, in turn, increases the availability of nutrients for plants, particularly in soils that are poor in phosphorus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Anaya-Ruiz, M.J.L.M., Perez-Santos, J.L., and Talamas-Rohana, J. 2003. An ecto-protein tyrosine phosphatase of Entamoeba histolytica induces cellular detachment by disruption of actin filaments in HeLa cells. Int. J. Paras. 33, 663–670.

    Article  CAS  Google Scholar 

  • Ascencio, J. 1994. Acid phosphatase as a diagnostic tool. Commun. Soil Sci. Plan. 25, 1553–1564.

    CAS  Google Scholar 

  • Baldwin, J.C., Karthikeyan, A.S., and Raghothama, K.G. 2001. LEPS2, a phosphorus starvation-induced novel acid phosphatase from tomato. Plant Physiol. 125, 728–737.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barton, P.L.A., Futerman, H., and Silman, I. 1985. Arrhenius plots of acetylcholinesterase activity in mammalian erythrocytes and in torpedo electric organ effect of solubilization by proteinases and by a phosphatidylinositol specific phospholipse-C. Biochem. J. 231, 237–240.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Braibant, M. and Content, J. 2001. The cell surface associated phosphatase activity of Mycobacterium bovis BCG is not regulated by enviromental inorganis phosphate. FEMS Microbiol. Lett. 195, 121–126.

    Article  CAS  PubMed  Google Scholar 

  • Braz, R.R. and Nahas, E. 2012. Synergistic action of both Aspergillus niger and Burkholderia cepacea in co-culture increases phosphate solubilization in growth medium. FEMS Microbiol. Lett. 332, 84–90.

    Article  CAS  PubMed  Google Scholar 

  • Buainain, L.B., Kadowaki, M.K., Polizeli, M.D., Terenzi, H.F., and Jorge, J.A. 1998. Characterization of a conidial alkaline phosphatase from the thermophilic fungus Humicola grisea var. thermoidea. J. Basic. Microbiol. 38, 85–94.

    Article  Google Scholar 

  • Buzalaf, M.A.R., Taga, E.M., Granjeiro, J.M., Ferreira, C.V., Lourenção, V.A., Ortega, M.M., Poletto, D.W., and Aoyama, H. 1998. Kinetic characterization of bovine lung low-molecularweight protein tyrosine phosphatase. Exp. Lung. Res. 24, 269–272.

    Article  CAS  PubMed  Google Scholar 

  • Catta-Preta, C.M.C., Nascimento, M.T.C., Garcia, M.C.F., Saraiva, E.M., Motta, M.C., and Meyer-Fernandes, J.R. 2013. The presence of a symbiotic bacterium in Strigomonas culicis is related to differential ecto-phosphatase activity and influences the mosquito-protozoa interaction. Int. J. Parasitol. 43, 571–577.

    Article  CAS  PubMed  Google Scholar 

  • Ciancaglini, P., Simão, A.M.S., Camolezi, F.L., Millán, J.L., and Pizauro, J.M. 2006. Contribution of matrix vesicles and alkaline phosphatase to ectopic bone formation. Braz. J. Med Biol. Res. 39, 603–610.

    Article  CAS  PubMed  Google Scholar 

  • Ciancaglini, P., Yadav, M.C., Simão, A.M., Narisawa, S., Pizauro, J.M., Farquharson, C., Hoylaerts, M.F., and Millán, J.L. 2010. Kinetic analysis of substrate utilization by native and TNAP-, NPP1-, or PHOSPHO1-deficient matrix vesicles. J. Bone Miner Res. 25, 716–723.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Collopy-Junior, I., Esteves, F.F., Nimrichter, L., Rodrigues, M.L., Alviano, C.S., and Meyer-Fernandes, J.R. 2006. An ectophosphatase activity in Cryptococcus neoformans. FEMS Yeast Res. 6, 1010–1017.

    Article  CAS  PubMed  Google Scholar 

  • Cosentino-Gomes, D., Rocco-Machado, N., Santi, L., Broetto, L., Vainstein, M.H., Meyer-Fernandes, J.R., Schrank, A., and Beysda-Silva, W.O. 2013. Inhibition of ecto-phosphatase activity in conidia reduces adhesion and virulence of Metarhizium anisopliae on the host insect Dysdercus peruvianus. Curr. Microbiol. 66, 467–474.

    Article  CAS  PubMed  Google Scholar 

  • Crans, D.C., Tarlton, M.L., and McLauchlan, C.C. 2014. Trigonal bipyramidal or square pyramidal coordination geometry? Investigating the most potent geometry for vanadium phosphatase inhibitors. Eur. J. Inorg. Chem. 27, 4450–4468.

    Article  Google Scholar 

  • Dassa, E. and Boquet, P.L. 1981. Is the acid-phosphatase of Escherichia coli with pH optimun of 2.5 a polyphosphate depolymerase. FEBS Lett. 135, 148–150.

    Article  CAS  PubMed  Google Scholar 

  • Durmus, A., Eicken, C., Sift, B.H., Kratel, A., Kappl, R., Hüttermann, J., and Krebs, B. 1999. The active site of purple acid phosphatase from sweet potatoes (Ipomoea batatas) -Metal content and spectroscopic characterization. Eur. J. Biochem. 260, 709–716.

    Article  CAS  PubMed  Google Scholar 

  • Dutra, P.M.L., Couto, L.C., Lopes, A.H.C.S., and Meyer-Feranandes, J.R. 2006. Characterization of ecto-phosphatase activities of Trypanosoma cruzi: a comparative study between Colombiana and Y strains. Acta Trop. 100, 88–95.

    Article  CAS  PubMed  Google Scholar 

  • Dutra, P.M.L., Rodrigues, C.O., Jesus, J.B., Lopes, A.H., Souto-Padrón, T., and Meyer-Fernandes, J.R. 1998. A novel ecto-phosphatase activity of Herpetomonas muscarummuscarum inhibited by platelet-activating factor. Biochem. Biophys. Res. Commun. 253, 164–169.

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich, K.C., Montalbano, B.G., Mullaney, E.J., Dischinger, H.C., and Ullah, A.H.J. 1994. An acid phosphatase from Aspergillus ficuum has homology to Penicillium chrysogenum PhoA. Biochem. Biophys. Res. Commun. 204, 63–68.

    Article  CAS  PubMed  Google Scholar 

  • Fernandes, E.C., Meyer-Fernandes, J.R., Silva-Neto, M.A., and Vercesi, A.E. 1997. Trypanosoma brucei: Ecto-phosphatase activity present on the surface of intact procyclic forms. Z. Naturforschung C. Biosci. 52, 351–358.

    CAS  Google Scholar 

  • Fonseca de Souza, A.L., Dick, C.F., Santos, A.L.A., and Meyer-Fernandes, J.R. 2008. A Mg2+-dependent ecto-phosphatase activity on the external surface of Trypanosoma rangeli modulated by exogenous inorganic phosphate. Acta Trop. 107, 153–158.

    Article  CAS  PubMed  Google Scholar 

  • Freitas-Mesquita, A.L. and Meyer-Fernandes, J.R. 2014. Biochemical properties and possible roles of ectophosphatase activities in fungi. Int. J. Mol. Sci. 15, 2289–2304.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fukami, Y. and Lipmann, F. 1982. Purification of a specififc reversible tyrosine o phosphates phosphatase. Proc. Natl. Acad. Sci. USA 79, 4275–4279.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Galdiano Junior, R.F., Nascimbem Pedrinho, E.A., Luque Castellane, T.C., and Lemos, E.G.L. 2011. Auxin producing bacteria isolated from the roots of Cattleya walkeriana, an endangered brazilian orchid, and their role in acclimatization. Rev. Bras. Cienc. Solo 35, 729–737.

    Article  Google Scholar 

  • Gargova, S., Sariyska, M., Angelov, A., and Stoilova, I. 2006. Aspergillus niger pH 2.1 optimum acid phosphatase with high affinity for phytate. Folia Microbiol. 51, 541–545.

    Article  CAS  Google Scholar 

  • Guimarães, L.H.S., Peixoto-Nogueira, S.C., Michelin, M., Rizzatti, A.C., Sandrim, V.C., Zanoelo, F.F., Aquino, A.C.M.M., Junior, A.B., and Polizeli, M.L.T.M. 2006. Screening of filamentous fungi for production of enzymes of biotechnological interest. Braz. J. Microbiol. 37, 474–480.

    Article  Google Scholar 

  • Hartree, E.F. 1972. Determination of protein: modification of Lowry method that gives a linear photometric response. Anal. Biochem. 48, 422–427.

    Article  CAS  PubMed  Google Scholar 

  • Jeon, J.S., Lee, S.S., Kim, H.Y., Ahn, T.S., and Song, H.G. 2003. Plant growth promotion in soil by some inoculated microorganisms. J. Microbiol. 41, 271–276.

    CAS  Google Scholar 

  • Jukes, T.H. and Cantor, C.R. 1969. Mammalian protein metabolism, pp. 21–132. In Munro, H.N. (ed.), Evolution of protein molecules, Academic Press, New York, USA.

  • Kang, S.H., Cho, K.K., Bok, J.D., Kim, S.C., Cho, J.S., Lee, P.C., Kang, S.K., Lee, H.G., Woo, J.H., Lee, H.J., et al. 2006. Cloning, sequencing and characterization of a novel phosphatase gene, phoI, from soil bacterium Enterobacter sp. 4. Curr. Microbiol. 52, 243–248.

    Article  CAS  PubMed  Google Scholar 

  • Kiffer-Moreira, T., Pinheiro, A.A., Pinto, M.R., Esteves, F.F., Souto-Padrón, T., Barreto-Bergter, E., and Meyer-Fernandes, J.R. 2007. Mycelial forms of Pseudallescheria boydii present ectophosphatase activities. Arch. Microbiol. 188, 159–166.

    Article  CAS  PubMed  Google Scholar 

  • Kneipp, L.F., Palmeira, V.F., Pinheiro, A.A.S., Alviano, C.S., Rozental, S., Travassos, L.R., and Meyer-Fernandes, J.R. 2003. Phosphatase activity on the cell wall of Fonsecaea pedrosoi. Med. Mycol. 41, 469–477.

    Article  CAS  PubMed  Google Scholar 

  • Kneipp, L.F., Rodrigues, M.L., Holandino, C., Esteves, F.F., Souto-Padrón, T., Alviano, C.S., Travassos, L.R., and Meyer-Fernandes, J.R. 2004. Ectophosphatase activity in conidial forms of Fonsecaea pedrosoi is modulated by exogenous phosphate and influences fungal adhesion to mammalian cells. Microbiol. 150, 3355–3362.

    Article  CAS  Google Scholar 

  • Kowluru, A. 2002. Identification and characterization of a novel protein histidine kinase in the islet beta cell: evidence for its regulation by mastoparan, an activator of G-proteins and insulin secretion. Biochem. Pharmacol. 63, 2091–2100.

    Article  CAS  PubMed  Google Scholar 

  • Lau, K.H.W., Onishi, T., Wergedal, J.E., Singer, F.R., and Baylink, D.J. 1987. Characterization and assay of tartarate resistent acid phosphatase activity in serum potencial use to asess bone reorption. Clin. Chem. 33, 458–462.

    CAS  PubMed  Google Scholar 

  • Lopez, V., Stevens, T., and Lindquist, R.N. 1976. Vanadium ion inhibition of alkaline phosphatase catalyzed phosphate ester hydrolysis. Arch. Biochem. Biophys. 175, 31–38.

    Article  CAS  PubMed  Google Scholar 

  • Macaskie, L.E. 1990. An immobilized cell process for the removal of heavy metals from aqueous flows. J. Chem. Tech. Biot. 49, 357–379.

    Article  CAS  Google Scholar 

  • Macaskie, L.E., Empson, R.M., Cheetham, A.K., Grey, C.P., and Skarnulis, A.J. 1992. Uranium bioaccumulation by a Citrobacter sp. as a result of enzymatically mediated growth of polycrystalline HUO2PO4. Science 257, 782–784.

    Article  CAS  PubMed  Google Scholar 

  • Mikanova, O. and Novakova, J. 2002. Evaluation of the P-solubilizing activity of soil microorganisms and its sensitivity to soluble phosphate. Rost Vyroba. 48, 397–400.

    CAS  Google Scholar 

  • Nautiyal, C.S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170, 265–270.

    Article  CAS  PubMed  Google Scholar 

  • Nercessian, O., Bienvenu, N., David Moreira, D., Prieur, D., and Jeanthon, C. 2005. Diversity of functional genes of methanogens, methanotrophs and sulfate reducers in deep-sea hydrothermal environments. Environ. Microbiol. 7, 118–132.

    Article  CAS  PubMed  Google Scholar 

  • Olczak, A.O., Seyler, R.W., Olson, J.W., and Maier, R.J. 2003. Association of Helicobacter pylori antioxidant activities with host colonization proficiency. Infect. Immun. 71, 580–583.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park, J.H., Bolan, N., Megharaj, M., and Naidu, R. 2011. Concomitant rock phosphate dissolution and lead immobilization by phosphate solubilizing bacteria (Enterobacter sp.). J. Environ. Manage. 92, 1115–1120.

    Article  CAS  PubMed  Google Scholar 

  • Pizauro, J.M., Ciancaglini, P., and Leone, F.A. 1995. Characterization of the phosphatidylinositol-specific phospholipase C-released form of rat osseous plate alkaline phosphatase and its possible significance on endochondral ossification. Mol. Cell Biochem. 152, 121–129.

    Article  CAS  PubMed  Google Scholar 

  • Richardson, A.E. 2001. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust. J. Plant. Physio. 28, 897–906.

    Google Scholar 

  • Rodriguez, H., Fraga, R., Gonzalez, T., and Bashan, Y. 2006. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287, 15–21.

    Article  CAS  Google Scholar 

  • Rombola, T.H., Pedrinho, E.A., de Macedo Lemos, E.G., Gonçalves, A.M, dos Santos, L.F., and Pizauro, J.M. 2014. Identification and enzymatic characterization of acid phosphatase from Burkholderia gladioli. BMC Res. Notes 7, 221.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rossolini, G.M., Schippa, S., Riccio, M.L., Berlutti, F., Macaskie, L.E., and Thaller, M.C. 1998. Bacterial nonspecific acid phosphohydrolases: physiology, evolution and use as tools in microbial biotechnology. Cell Mol. Life Sci. 54, 833–850.

    Article  CAS  PubMed  Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Sashidhar, B., Inampudi, K.K., Guruprasad, L., Kondreddy, A., Gopinath, K., and Podile, A.R. 2010. Highly conserved Asp-204 and Gly-776 are important for activity of the quinoprotein glucose dehydrogenase of Escherichia coli and for mineral phosphate solubilization. J. Mol. Microbiol. Biot. 18, 109–119.

    Article  CAS  Google Scholar 

  • Shoebitz, M., Ribaudo, C.M., Pardo, M.A., María, L., Cantorec, M.L., Ciampia, L., and Curáb, J.A. 2009. Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Soil Biol. Biochem. 41, 1768–1774.

    Article  CAS  Google Scholar 

  • Stanford, S.M., Ahmed, V., Barrios, A.M., and Bottini, N. 2014. Cellular biochemistry methods for investigating protein tyrosine phosphatases. Antioxid. Redox Signal. 20, 2160–2178.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Swarup, G., Cohen, S., and Garbers, D.L. 1982. Inhibition of membrane phosphotyrosyl protein phosphatase activity by vanadate. Biochem. Biophys. Res. Commun. 107, 1104–1109.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. Clustal W improving the sensitivity of progressive mulltiple sequence alignment throough sequence weghting position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsavkelova, E.A., Cherdyntseva, T.A., Klimova, S.A., Shestakov, A.I., Botina, S.G., and Netrusov, A.I. 2007. Orchid-associated bacteria produce indole-3-acetic acid, promote seed germination, and increase their microbial yield in response to exogenous auxin. Arch. Microbiol. 188, 655–664.

    Article  CAS  PubMed  Google Scholar 

  • Ullah, A.H.J. and Cummins, B.J. 1988. Extracellular pH 2.5 optimum acid phosphatase from Aspergillus ficuum immobilization on modified fractogel. Prep. Biochem. 18, 473–481.

    CAS  PubMed  Google Scholar 

  • Wang, X.Y., Meng, F.G., and Zhou, H.M. 2004. The role of disulfide bonds in the conformational stability and catalytic activity of phytase. Biochem. Cell Biol. 82, 329–334.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Meng, F., and Zhang, Y. 2009. Expression, purification and characterization of recombinant protein tyrosine phosphatase from Thermus thermophilus HB27. Acta Biochim. Biophys. Sin. (Shanghai) 41, 689–698.

    Article  CAS  Google Scholar 

  • Wyss, M., Pasamontes, L., Rémy, R., Kohler, J., Kusznir, E., Gadient, M., Müller, F., and van Loon, A.P.G.M. 1998. Comparison of the thermostability properties of three acid phosphatases from molds: Aspergillus fumigatus phytase, A. niger phytase, and A. niger pH 2.5 acid phosphatase. Appl. Environ. Microbiol. 64, 4446–4451.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Martins Pizauro Junior.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, V.S., Galdiano Júnior, R.F., Rodrigues, G.R. et al. Kinetic characterization of a novel acid ectophosphatase from Enterobacter asburiae . J Microbiol. 54, 106–113 (2016). https://doi.org/10.1007/s12275-015-5354-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-015-5354-3

Keywords

Navigation