Skip to main content
Log in

A protective role of methionine-R-sulfoxide reductase against cadmium in Schizosaccharomyces pombe

  • Note
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The Schizosaccharomyces pombe cells harboring the methionine- R-sulfoxide reductase (MsrB)-overexpressing recombinant plasmid pFMetSO exhibited better growth than vector control cells, when shifted into fresh medium containing cadmium chloride (abbreviated as Cd). Although both groups of cells contained enhanced reactive oxygen species (ROS) and nitric oxide (NO) levels in the presence of Cd, ROS and NO levels were significantly lower in the S. pombe cells harboring pFMetSO than in vector control cells. Conversely, the S. pombe cells harboring pFMetSO possessed higher total glutathione (GSH) levels and a greater reduced/oxidized GSH ratio than vector control cells under the same conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atack J.M. and Kelly D.J. 2008. Contribution of the stereospecific methionine sulphoxide reductases MsrA and MsrB to oxidative and nitrosative stress resistance in the food-borne pathogen Campylobacter jejuni. Microbiology 154 Pt 8, 2219–2230.

    Article  Google Scholar 

  • Baudouin-Cornu P. and Labarre J. 2006. Regulation of the cadmium stress response through SCF-like ubiquitin ligases: comparison between Saccharomyces cerevisiae, Schizosaccharomyces pombe and mammalian cells. Biochimie 88, 1673–1685.

    Article  CAS  PubMed  Google Scholar 

  • Bertin G. and Averbeck D. 2006. Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 88, 1549–1559.

    Article  CAS  PubMed  Google Scholar 

  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S., Kundu S., Sengupta S., and Bhattacharyya A. 2009. Divergence to apoptosis from ROS-induced cell cycle arrest: effect of cadmium. Mutat. Res. 663, 22–31.

    Article  CAS  PubMed  Google Scholar 

  • Clemens S., Kim E.J., Neumann D., and Schroeder J.I. 1999. Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J. 18, 3325–3333.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cobbett C. and Goldsbrough P. 2002. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu. Rev. Plant Biol. 53, 159–182.

    Article  CAS  PubMed  Google Scholar 

  • Cuypers A., Plusquin M., Remans T., Jozefczak M., Keunen E., Gielen H., Opdenakker K., Nair A.R., Munters E., Artois T.J., and et al. 2010. Cadmium stress: an oxidative challenge. Biometals 23, 927–940.

    Article  CAS  PubMed  Google Scholar 

  • De Luca A., Sanna F., Sallese M., Ruggiero C., Grossi M., Sacchetta P., Rossi C., De Laurenzi V., Di Ilio C., and Favaloro B. 2010. Methionine sulfoxide reductase A down-regulation in human breast cancer cells results in a more aggressive phenotype. Proc. Natl. Acad. Sci. USA 107, 18628–18633.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ercal N., Gurer-Orhan H., and Aykin-Burns N. 2001. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr. Top. Med. Chem. 1, 529–539.

    Article  CAS  PubMed  Google Scholar 

  • Filipic M. 2012. Mechanisms of cadmium-induced genomic instability. Mutat. Res. 733, 69–77.

    Article  CAS  PubMed  Google Scholar 

  • Floreani M., Petrone M., Debetto P., and Palatini P. 1997. A comparison between different methods for the determination of reduced and oxidized glutathione in mammalian tissues. Free Radic. Res. 26, 449–455.

    Article  CAS  PubMed  Google Scholar 

  • Gardarin A., Chédin S., Lagniel G., Aude J.C., Godat E., Catty P., and Labarre J. 2010. Endoplasmic reticulum is a major target of cadmium toxicity in yeast. Mol. Microbiol. 76, 1034–1048.

    Article  CAS  PubMed  Google Scholar 

  • Groppa M.D., Rosales E.P., Iannone M.F., and Benavides M.P. 2008. Nitric oxide, polyamines and Cd-induced phytotoxicity in wheat roots. Phytochem. 69, 2609–2615.

    Article  CAS  Google Scholar 

  • Gutteridge J.M. 1993. Anthracycline toxicity, iron and oxygen radicals, and chelation therapy. J. Lab. Clin. Med. 122, 228–229.

    CAS  PubMed  Google Scholar 

  • Hallenbeck W.H. 1986. Human health effects of exposure to cadmium. Experientia Suppl. 50, 131–137.

    Article  CAS  PubMed  Google Scholar 

  • Hendry G.A.F., Baker A.J.M., and Ewart C.F. 1992. Cadmium tolerance and toxicity, oxygen radical processes and molecular damage in cadmium-tolerant and cadmium-sensitive clones of Holcus lanatus. Acta Bot. Neerl. 41, 271–281.

    CAS  Google Scholar 

  • Hwang G.W., Sasaki K., Takahashi T., Yamamoto R., and Naganuma A. 2009. Overexpression of Ycg1 or Ydr520c confers resistance to cadmium in Saccharomyces cerevisiae. J. Toxicol. Sci. 34, 441–443.

    Article  CAS  PubMed  Google Scholar 

  • Jo H., Cho Y.W., Ji S.Y., Kang G.Y., and Lim C.J. 2013. Protective roles of methionine-R-sulfoxide reductase against stresses in Schizosaccharomyces pombe. J. Basic. Microbiol. Doi: 10.1002/jobm.201200397. [Epub ahead of print]

    Google Scholar 

  • Kiani-Esfahani A., Tavalaee M., Deemeh M.R., Hamiditabar M., and Nasr-Esfahani M.H. 2012. DHR123: an alternative probe for assessment of ROS in human spermatozoa. Syst. Biol. Reprod. Med. 58, 168–174.

    Article  CAS  PubMed  Google Scholar 

  • Kim H.Y. and Gladyshev V.N. 2007. Methionine sulfoxide reductases: selenoprotein forms and roles in antioxidant protein repair in mammals. Biochem. J. 407, 321–329.

    Article  CAS  PubMed  Google Scholar 

  • Le D.T., Lee B.C., Marino S.M., Zhang Y., Fomenko D.E., Kaya A., Hacioglu E., Kwak G.H., Koc A., Kim H.Y., and et al. 2009. Functional analysis of free methionine-R-sulfoxide reductase from Saccharomyces cerevisiae. J. Biol. Chem. 284, 4354–4364.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Z.S., Lu Y.P., Zhen R.G., Szczypka M., Thiele D.J., and Rea P.A. 1997. A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis (glutathionato) cadmium. Proc. Natl. Acad. Sci. USA 94, 42–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Z. and Yuan H. 2008. Responses of Rhodotorula sp. Y11 to cadmium. Biometals 21, 613–621.

    Article  CAS  Google Scholar 

  • Li R., Yuan C., Dong C., Shuang S., and Choi M.M. 2011. In vivo antioxidative effect of isoquercitrin on cadmium-induced oxidative damage to mouse liver and kidney. Naunyn Schmiedebergs Arch. Pharmacol. 383, 437–445.

    Article  CAS  PubMed  Google Scholar 

  • Liu J., Qu W., and Kadiiska M.B. 2009. Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol. Appl. Pharmacol. 238, 209–214.

    Article  CAS  PubMed  Google Scholar 

  • Liu J., Zhang Y., Huang D., and Song G. 2005. Cadmium-induced MTs synthesis via oxidative stress in yeast Saccharomyces cerevisiae. Mol. Cell. Biochem. 280, 139–145.

    Article  CAS  PubMed  Google Scholar 

  • López E., Arce C., Oset-Gasque M.J., Cañadas S., and González M.P. 2006. Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture. Free Radic. Biol. Med. 40, 940–951.

    Article  PubMed  Google Scholar 

  • Martín J.E., Alizadeh B.Z., González-Gay M.A., Balsa A., Pascual-Salcedo D., Fernández-Gutiérrez B., Raya E., Franke L., van’t Slot R., Coenen M.J., and et al. 2010. Identification of the oxidative stress-related gene MSRA as a rheumatoid arthritis susceptibility locus by genome-wide pathway analysis. Arthritis Rheum. 62, 3183–3190.

    Article  PubMed  Google Scholar 

  • Mielniczki-Pereira A.A., Hahn A.B., Bonatto D., Riger C.J., Eleutherio E.C., and Henriques J.A. 2011. New insights into the Ca2+-ATPases that contribute to cadmium tolerance in yeast. Toxicol. Lett. 207, 104–111.

    Article  CAS  PubMed  Google Scholar 

  • Muthukumar K., Rajakumar S., Sarkar M.N., and Nachiappan V. 2011. Glutathione peroxidase 3 of Saccharomyces cerevisiae protects phospholipids during cadmium-induced oxidative stress. Antonie van Leeuwenhoek 99, 761–771.

    Article  CAS  PubMed  Google Scholar 

  • Myers A.M., Tzagoloff A., Kinney D.M., and Lusty C.J. 1986. Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene 45, 299–310.

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa K., Saijo N., Tsuchida S., Sakai M., Tsunokawa Y., Yokota J., Muramatsu M., Sato K., Terada M., and Tew K.D. 1990. Glutathione-S-transferase pi as a determinant of drug resistance in transfectant cell lines. J. Biol. Chem. 265, 4296–4301.

    CAS  PubMed  Google Scholar 

  • Navarrete C., Siles A., Martínez J.L., Calero F., and Ramos J. 2009. Oxidative stress sensitivity in Debaryomyces hansenii. FEMS Yeast Res. 9, 582–590.

    Article  CAS  PubMed  Google Scholar 

  • Nordberg J. and Arnér E.S. 2001. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med. 31, 1287–1312.

    Article  CAS  PubMed  Google Scholar 

  • Ortiz D.F., Ruscitti T., McCue K.F., and Ow D.W. 1995. Transport of metal-binding peptides by HMT1, a fission yeast ABCtype vacuolar membrane protein. J. Biol. Chem. 270, 4721–4728.

    Article  CAS  PubMed  Google Scholar 

  • Royall J.A. and Ischiropoulos H. 1993. Evaluation of 2’,7’-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch. Biochem. Biophys. 302, 348–355.

    Article  CAS  PubMed  Google Scholar 

  • Sherman M.P., Aeberhard E.E., Wong V.Z., Griscavage J.M., and Ignarro L.J. 1993. Pyrrolidine dithiocarbamate inhibits induction of nitric oxide synthase activity in rat alveolar macrophages. Biochem. Biophys. Res. Commun. 191, 1301–1308.

    Article  CAS  PubMed  Google Scholar 

  • Silver S. and Phung L.T. 1996. Bacterial heavy metal resistance: new surprises. Annu. Rev. Microbiol. 50, 753–789.

    Article  CAS  PubMed  Google Scholar 

  • Thévenod F. 2009. Cadmium and cellular signaling cascades: to be or not to be? Toxicol. Appl. Pharmacol. 238, 221–239.

    Article  PubMed  Google Scholar 

  • Vashisht A.A., Kennedy P.J., and Russell P. 2009. Centaurin-like protein Cnt5 contributes to arsenic and cadmium resistance in fission yeast. FEMS Yeast Res. 9, 257–269.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vido K., Spector D., Lagniel G., Lopez S., Toledano M.B., and Labarre J. 2001. A proteome analysis of the cadmium response in Saccharomyces cerevisiae. J. Biol. Chem. 276, 8469–8474.

    Article  CAS  PubMed  Google Scholar 

  • Walss-Bass C., Soto-Bernardini M.C., Johnson-Pais T., Leach R.J., Ontiveros A., Nicolini H., Mendoza R., Jerez A., Dassori A., Chavarria-Siles I., and et al. 2009. Methionine sulfoxide reductase: a novel schizophrenia candidate gene. Am. J. Med. Genet. B Neuropsychiatr. Genet. 150B, 219–225.

    Article  CAS  PubMed  Google Scholar 

  • Wang L., Yan B., Liu N., Li Y., and Wang Q. 2008. Effects of cadmium on glutathione synthesis in hepatopancreas of freshwater crab, Sinopotamon yangtsekiense. Chemosphere 74, 51–56.

    Article  CAS  PubMed  Google Scholar 

  • WHO. 2003. Nordic Council of Ministers: Cadmium Review. World Health Organization 1, 1–24.

    Google Scholar 

  • Wink D.A., Miranda K.M., and Espey M.G. 2001. Cytotoxicity related to oxidative and nitrosative stress by nitric oxide. Exp. Biol. Med. 226, 621–623.

    CAS  Google Scholar 

  • Xiong J., An L., Lu H., and Zhu C. 2009. Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta 230, 755–765.

    Article  CAS  PubMed  Google Scholar 

  • Zhao C., Hartke A., La Sorda M., Posteraro B., Laplace J.M., Auffray Y., and Sanguinetti M. 2010. Role of methionine sulfoxide reductases A and B of Enterococcus faecalis in oxidative stress and virulence. Infect. Immun. 78, 3889–3897.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyunghoon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, CJ., Jo, H. & Kim, K. A protective role of methionine-R-sulfoxide reductase against cadmium in Schizosaccharomyces pombe . J Microbiol. 52, 976–981 (2014). https://doi.org/10.1007/s12275-014-3512-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-014-3512-7

Keywords

Navigation