Skip to main content
Log in

Surface oxidation of transition metal sulfide and phosphide nanomaterials

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 05 July 2021

This article has been updated

Abstract

Many transition metal sulfides and phosphides are susceptible to surface oxidation under ambient conditions. The formed surface oxidation layer, which is likely to further restructure under reaction conditions, alters the chemical properties of the pristine material but has not been well studied. In this work, we for the first time use X-ray photoelectron spectroscopy to quantify the natural surface oxidation of transition metal phosphide and sulfide nanoparticles and employ a simplified Deal-Grove model to analyze the kinetics. We show that CoS2 oxidizes faster than CoS whereas CoP2 is more difficult to oxidize compared to CoP, and there exists an inverse correlation between the surface oxidation rate and the Co-S/P distance in the pristine structure. More inclusive investigation unveils different types of surface oxidation behavior: CoS, NiS and FeS are limited by their reactivity with oxygen; CoS2 is the most reactive and its oxidation is governed by oxygen diffusion; CoP2 is influenced by both reactivity and diffusion; CoP, Ni2P, Cu3P and MoP exhibit high initial oxidation degrees and the kinetics are not well-defined; MoS2 is largely stable against oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Geng, P. B.; Zheng, S. S.; Tang, H.; Zhu, R. M.; Zhang, L.; Cao, S.; Xue, H. G.; Pang, H. Transition metal sulfides based on graphene for electrochemical energy storage. Adv. Energy Mater. 2018, 8, 1703259.

    Article  Google Scholar 

  2. Joo, J.; Kim, T.; Lee, J.; Choi, S. I.; Lee, K. Morphology-controlled metal sulfides and phosphides for electrochemical water splitting. Adv. Mater. 2019, 31, 1806682.

    Article  Google Scholar 

  3. Callejas, J. F.; Read, C. G.; Roske, C. W.; Lewis, N. S.; Schaak, R. E. Synthesis, characterization, and properties of metal phosphide catalysts for the hydrogen-evolution reaction. Chem. Mater. 2016, 28, 6017–6044.

    Article  CAS  Google Scholar 

  4. Guo, Y. N.; Park, T.; Yi, J. W.; Henzie, J.; Kim, J.; Wang, Z. L.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J. et al. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv. Mater. 2019, 31, 1807134.

    Article  Google Scholar 

  5. Li, X. L.; Liu, W.; Zhang, M. Y.; Zhong, Y. R.; Weng, Z.; Mi, Y. Y.; Zhou, Y.; Li, M.; Cha, J. J.; Tang, Z. Y. et al. Strong metal-phosphide interactions in core-shell geometry for enhanced electrocatalysis. Nano Lett. 2017, 17, 2057–2063.

    Article  CAS  Google Scholar 

  6. Liu, W.; Hu, E. Y.; Jiang, H.; Xiang, Y. J.; Weng, Z.; Li, M.; Fan, Q.; Yu, X. Q.; Altman, E. I.; Wang, H. L. A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide. Nat. Commun. 2016, 7, 10771.

    Article  CAS  Google Scholar 

  7. Chen, Y. N.; Xu, S. M.; Zhu, S. Z.; Jacob, R. J.; Pastel, G.; Wang, Y. B.; Li, Y. J.; Dai, J. Q.; Chen, F. J.; Xie, H. et al. Millisecond synthesis of CoS nanoparticles for highly efficient overall water splitting. Nano Res. 2019, 12, 2259–2267.

    Article  CAS  Google Scholar 

  8. Zhao, X. J.; Luo, D.; Wang, Y.; Liu, Z. H. Reduced graphene oxide-supported CoP nanocrystals confined in porous nitrogen-doped carbon nanowire for highly enhanced lithium/sodium storage and hydrogen evolution reaction. Nano Res. 2019, 12, 2872–2880.

    Article  CAS  Google Scholar 

  9. Saadi, F. H.; Carim, A. I.; Verlage, E.; Hemminger, J. C.; Lewis, N. S.; Soriaga, M. P. CoP as an acid-stable active electrocatalyst for the hydrogen-evolution reaction: Electrochemical synthesis, interfacial characterization and performance evaluation. J. Phys. Chem. C 2014, 118, 29294–29300.

    Article  CAS  Google Scholar 

  10. Pan, Y.; Lin, Y.; Chen, Y. J.; Liu, Y. Q.; Liu, C. G. Cobalt phosphide-based electrocatalysts: Synthesis and phase catalytic activity comparison for hydrogen evolution. J. Mater. Chem. A 2016, 4, 4745–4754.

    Article  CAS  Google Scholar 

  11. Popczun, E. J.; Read, C. G.; Roske, C. W.; Lewis, N. S.; Schaak, R. E. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 5427–5430.

    Article  CAS  Google Scholar 

  12. Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590.

    Article  CAS  Google Scholar 

  13. Ryu, J.; Jung, N.; Jang, J. H.; Kim, H. J.; Yoo, S. J. In situ transformation of hydrogen-evolving CoP nanoparticles: Toward efficient oxygen evolution catalysts bearing dispersed morphologies with co-oxo/hydroxo molecular units. ACS Catal. 2015, 5, 4066–4074.

    Article  CAS  Google Scholar 

  14. Jin, S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? ACS Energy Lett. 2017, 2, 1937–1938.

    Article  CAS  Google Scholar 

  15. Lee, M.; Oh, H. S.; Cho, M. K.; Ahn, J. P.; Hwang, Y. J.; Min, B. K. Activation of a Ni electrocatalyst through spontaneous transformation of nickel sulfide to nickel hydroxide in an oxygen evolution reaction. Appl. Catal. B Environ. 2018, 233, 130–135.

    Article  CAS  Google Scholar 

  16. Zuo, Y.; Liu, Y. P.; Li, J. S.; Du, R. F.; Han, X.; Zhang, T.; Arbiol, J.; Divins, N. J.; Llorca, J.; Guijarro, N. et al. In situ electrochemical oxidation of Cu2S into CuO nanowires as a durable and efficient electrocatalyst for oxygen evolution reaction. Chem. Mater. 2019, 31, 7732–7743.

    Article  CAS  Google Scholar 

  17. Gan, Q.; Wu, Z. S.; Li, X. L.; Liu, W.; Wang, H. L. Structure and electrocatalytic reactivity of cobalt phosphosulfide nanomaterials. Top. Catal. 2018, 61, 958–964.

    Article  CAS  Google Scholar 

  18. Wu, Z. S.; Li, X. L.; Liu, W.; Zhong, Y. R.; Gan, Q.; Li, X. M.; Wang, H. L. Materials chemistry of iron phosphosulfide nanoparticles: Synthesis, solid state chemistry, surface structure, and electrocatalysis for the hydrogen evolution reaction. ACS Catal. 2017, 7, 4026–4032.

    Article  CAS  Google Scholar 

  19. Pető, J.; Ollár, T.; Vancsó, P.; Popov, Z. I.; Magda, G. Z.; Dobrik, G.; Hwang, C.; Sorokin, P. B.; Tapasztó, L. Spontaneous doping of the basal plane of MoS2 single layers through oxygen substitution under ambient conditions. Nat. Chem. 2018, 10, 1246–1251.

    Article  Google Scholar 

  20. Zhang, Y.; Gao, L.; Hensen, E. J. M.; Hofmann, J. P. Evaluating the stability of Co2P electrocatalysts in the hydrogen evolution reaction for both acidic and alkaline electrolytes. ACS Energy Lett. 2018, 3, 1360–1365.

    Article  CAS  Google Scholar 

  21. Wu, Z. S.; Gan, Q.; Li, X. L.; Zhong, Y. R.; Wang, H. L. Elucidating surface restructuring-induced catalytic reactivity of cobalt phosphide nanoparticles under electrochemical conditions. J. Phys. Chem. C 2018, 122, 2848–2853.

    Article  CAS  Google Scholar 

  22. Wu, Z. S.; Huang, L.; Liu, H.; Wang, H. L. Element-specific restructuring of anion- and cation-substituted cobalt phosphide nanoparticles under electrochemical water-splitting conditions. ACS Catal. 2019, 9, 2956–2961.

    Article  CAS  Google Scholar 

  23. Zhong, Y. R.; Yin, L. C.; He, P.; Liu, W.; Wu, Z. S.; Wang, H. L. Surface chemistry in cobalt phosphide-stabilized lithium-sulfur batteries. J. Am. Chem. Soc. 2018, 140, 1455–1459.

    Article  CAS  Google Scholar 

  24. Yang, Y. X.; Zhong, Y. R.; Shi, Q. W.; Wang, Z. H.; Sun, K. N.; Wang, H. L. Electrocatalysis in lithium sulfur batteries under lean electrolyte conditions. Angew. Chem., Int. Ed. 2018, 57, 15549–15552.

    Article  CAS  Google Scholar 

  25. Mi, Y. Y.; Liu, W.; Li, X. L.; Zhuang, J. L.; Zhou, H. H.; Wang, H. L. High-performance Li–S battery cathode with catalyst-like carbon nanotube-MoP promoting polysulfide redox. Nano Res. 2017, 10, 3698–3705.

    Article  CAS  Google Scholar 

  26. Vasiliy, T. Materials Science International Team, M. Phase Diagarm of the Co-S Binary System: Datasheet from Msi Eureka in Springer-materials[Online]. Stuttgart: MSI, Materials Science International Services GmbH. https://materials.springer.com/msi/phase-diagram/docs/sm_msi_r_10_011155_01_full_LnkDia0.

  27. Wang, H. L.; Liang, Y. Y.; Li, Y. G.; Dai, H. J. Co1–XS–graphene hybrid: A high-performance metal chalcogenide electrocatalyst for oxygen reduction. Angew. Chem., Int. Ed. 2011, 50, 10969–10972.

    Article  CAS  Google Scholar 

  28. Deal, B. E.; Grove, A. S. General relationship for the thermal oxidation of silicon. J. Appl. Phys. 1965, 36, 3770–3778.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Sloan Research Fellowship. L. H. and H. L. acknowledge graduate student exchange fellowships from the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailiang Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Huang, L., Liu, H. et al. Surface oxidation of transition metal sulfide and phosphide nanomaterials. Nano Res. 14, 2264–2267 (2021). https://doi.org/10.1007/s12274-020-3219-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3219-5

Keywords

Navigation