Skip to main content
Log in

Nanoscale monitoring of mitochondria and lysosome interactions for drug screening and discovery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Technology advances in genomics, proteomics, and metabolomics largely expanded the pool of potential therapeutic targets. Compared with the in vitro setting, cell-based screening assays have been playing a key role in the processes of drug discovery and development. Besides the commonly used strategies based on colorimetric and cell viability, we reason that methods that capture the dynamic cellular events will facilitate optimal hit identification with high sensitivity and specificity. Herein, we propose a live-cell screening strategy using structured illumination microscopy (SIM) combined with an automated cell colocalization analysis software, Cellprofiler™, to screen and discover drugs for mitochondria and lysosomes interaction at a nanoscale resolution in living cells. This strategy quantitatively benchmarks the mitochondria-lysosome interactions such as mitochondria and lysosomes contact (MLC) and mitophagy. The automatic quantitative analysis also resolves fine changes of the mitochondria-lysosome interaction in response to genetic and pharmacological interventions. Super-resolution live-cell imaging on the basis of quantitative analysis opens up new avenues for drug screening and development by targeting dynamic organelle interactions at the nanoscale resolution, which could facilitate optimal hit identification and potentially shorten the cycle of drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bialer, M.; White, H. S. Key factors in the discovery and development of new antiepileptic drugs. Nat. Rev. Drug Discov. 2010, 9, 68–82.

    Article  Google Scholar 

  2. Chen, Q. X.; Shao, X. T.; Ling, P. X.; Liu, F.; Han, G. Y.; Wang, F. S. Recent advances in polysaccharides for osteoarthritis therapy. Eur. J. Med. Chem. 2017, 139, 926–935.

    Article  Google Scholar 

  3. Prasad, V.; Mailankody, S. Research and development spending to bring a single cancer drug to market and revenues after approval. JAMA Intern. Med. 2017, 177, 1569–1575.

    Article  Google Scholar 

  4. Schulze, K.; Imbeaud, S.; Letouzé, E.; Alexandrov, L. B.; Calderaro, J.; Rebouissou, S.; Couchy, G.; Meiller, C.; Shinde, J.; Soysouvanh, F. et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet. 2015, 47, 505–511.

    Article  Google Scholar 

  5. Xu, D. C.; Jin, T. J.; Zhu, H.; Chen, H. B.; Ofengeim, D.; Zou, C. Y.; Mifflin, L.; Pan, L. F.; Amin, P.; Li, W. J. et al. TBK1 suppresses RIPK1-driven apoptosis and inflammation during development and in aging. Cell 2018, 174, 1477–1491.E19.

    Article  Google Scholar 

  6. Han, M. H.; Hwang, S. I.; Roy, D. B.; Lundgren, D. H.; Price, J. V.; Ousman, S. S.; Fernald, G. H.; Gerlitz, B.; Robinson, W. H.; Baranzini, S. E. et al. Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 2008, 451, 1076–1081.

    Article  Google Scholar 

  7. Wishart, D. S. Emerging applications of metabolomics in drug discovery and precision medicine. Nat. Rev. Drug Discov. 2016, 15, 473–484.

    Article  Google Scholar 

  8. Vega-Avila, E.; Pugsley, M. K. An overview of colorimetric assay methods used to assess survival or proliferation of mammalian cells. Proc. West. Pharmacol. Soc. 2011, 54, 10–14.

    Google Scholar 

  9. Chen, Q. X.; Mei, X. F.; Han, G. Y.; Ling, P. X.; Guo, B.; Guo, Y. W.; Shao, H. R.; Wang, G.; Cui, Z.; Bai, Y. X. et al. Xanthan gum protects rabbit articular chondrocytes against sodium nitroprusside-induced apoptosis in vitro. Carbohydr. Polym. 2015, 131, 363–369.

    Article  Google Scholar 

  10. Chen, Q. X.; Shao, X. T.; Ling, P. X.; Liu, F.; Shao, H. R.; Ma, A. B.; Wu, J. X.; Zhang, W.; Liu, F. Y.; Han, G. Y. et al. Low molecular weight xanthan gum suppresses oxidative stress-induced apoptosis in rabbit chondrocytes. Carbohydr. Polym. 2017, 169, 255–263.

    Article  Google Scholar 

  11. Frankfurt, O. S.; Krishan, A. Enzyme-linked immunosorbent assay (ELISA) for the specific detection of apoptotic cells and its application to rapid drug screening. J. Immunol. Methods 2001, 253, 133–144.

    Article  Google Scholar 

  12. Krutzik, P. O.; Nolan, G. P. Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat. Methods 2006, 3, 361–368.

    Article  Google Scholar 

  13. Krutzik, P. O.; Crane, J. M.; Clutter, M. R.; Nolan, G. P. High-content single-cell drug screening with phosphospecific flow cytometry. Nat. Chem. Biol. 2008, 4, 132–142.

    Article  Google Scholar 

  14. Rudin, M.; Weissleder, R. Molecular imaging in drug discovery and development. Nat. Rev. Drug Discov. 2003, 2, 123–131.

    Article  Google Scholar 

  15. Neefjes, J.; Dantuma, N. P. Fluorescent probes for proteolysis: Tools for drug discovery. Nat. Rev. Drug Discov. 2004, 3, 58–69.

    Article  Google Scholar 

  16. Willets, K. A. Super-resolution imaging of SERS hot spots. Chem. Soc. Rev. 2014, 43, 3854–3864.

    Article  Google Scholar 

  17. Jia, S.; Vaughan, J. C.; Zhuang, X. W. Isotropic three-dimensional superresolution imaging with a self-bending point spread function. Nat. Photonics 2014, 8, 302–306.

    Article  Google Scholar 

  18. Boutros, M.; Heigwer, F.; Laufer, C. Microscopy-based high-content screening. Cell 2015, 163, 1314–1325.

    Article  Google Scholar 

  19. Usaj, M. M.; Styles, E. B.; Verster, A. J.; Friesen, H.; Boone, C.; Andrews, B. J. High-content screening for quantitative cell biology. Trends Cell Biol. 2016, 26, 598–611.

    Article  Google Scholar 

  20. Liu, Z.; Lavis, L. D.; Betzig, E. Imaging live-cell dynamics and structure at the single-molecule level. Mol. Cell 2015, 58, 644–659.

    Article  Google Scholar 

  21. Chen, Q. X.; Jin, C. Z.; Shao, X. T.; Guan, R. L.; Tian, Z. Q.; Wang, C. R.; Liu, F.; Ling, P. X.; Guan, J. L.; Ji, L. N. et al. Super-resolution tracking of mitochondrial dynamics with an iridium(III) luminophore. Small 2018, 14, 1802166.

    Article  Google Scholar 

  22. Hanne, J.; Falk, H. J.; Görlitz, F.; Hoyer, P.; Engelhardt, J.; Sahl, S. J.; Hell, S. W. STED nanoscopy with fluorescent quantum dots. Nat. Commun. 2015, 6, 7127.

    Article  Google Scholar 

  23. Tian, X. H.; Liu, T. Y.; Fang, B.; Wang, A. D.; Zhang, M. Z.; Hussain, S.; Luo, L.; Zhang, R. L.; Zhang, Q.; Wu, J. Y. et al. Neun-specific fluorescent probe revealing neuronal nuclei protein and nuclear acids association in living neurons under STED nanoscopy. ACS Appl. Mater. Interfaces 2018, 10, 31959–31964.

    Article  Google Scholar 

  24. Huang, X. S.; Fan, J. C.; Li, L. J.; Liu, H. S.; Wu, R. L.; Wu, Y.; Wei, L. S.; Mao, H.; Lal, A.; Xi, P. et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat. Biotechnol. 2018, 36, 451–459.

    Article  Google Scholar 

  25. Sigal, Y. M.; Zhou, R. B.; Zhuang, X. W. Visualizing and discovering cellular structures with super-resolution microscopy. Science 2018, 361, 880–887.

    Article  Google Scholar 

  26. Huang, B.; Wang, W. Q.; Bates, M.; Zhuang, X. W. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 2008, 319, 810–813.

    Article  Google Scholar 

  27. Ha, T.; Tinnefeld, P. Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. Annu. Rev. Phys. Chem. 2012, 63, 595–617.

    Article  Google Scholar 

  28. Fernández-Suárez, M.; Ting, A. Y. Fluorescent probes for super-resolution imaging in living cells. Nat. Rev. Mol. Cell Biol. 2008, 9, 929–943.

    Article  Google Scholar 

  29. Onnis, A.; Cianfanelli, V.; Cassioli, C.; Samardzic, D.; Pelicci, P. G.; Cecconi, F.; Baldari, C. T. The pro-oxidant adaptor p66SHC promotes B cell mitophagy by disrupting mitochondrial integrity and recruiting LC3-II. Autophagy 2018, 14, 2117–2138.

    Article  Google Scholar 

  30. Wong, Y. C.; Ysselstein, D.; Krainc, D. Mitochondria–lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature 2018, 554, 382–386.

    Article  Google Scholar 

  31. Burbulla, L. F.; Song, P. P.; Mazzulli, J. R.; Zampese, E.; Wong, Y. C.; Jeon, S.; Santos, D. P.; Blanz, J.; Obermaier, C. D.; Strojny, C. et al. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science 2017, 357, 1255–1261.

    Article  Google Scholar 

  32. Tian, Z. Q.; Gong, J. H.; Crowe, M.; Lei, M.; Li, D. C.; Ji, B. H.; Diao, J. J. Biochemical studies of membrane fusion at the single-particle level. Prog. Lipid Res. 2019, 73, 92–100.

    Article  Google Scholar 

  33. Liu, K.; Lee, J.; Ou, J. H. J. Autophagy and mitophagy in hepatocarcinogenesis. Mol. Cell. Oncol. 2018, 5, e1405142.

    Article  Google Scholar 

  34. Lamprecht, M. R.; Sabatini, D. M.; Carpenter, A. E. CellProfiler™: Free, versatile software for automated biological image analysis. Biotechniques 2007, 42, 71–75.

    Article  Google Scholar 

  35. Kamentsky, L.; Jones, T. R.; Fraser, A.; Bray, M. A.; Logan, D. J.; Madden, K. L.; Ljosa, V.; Rueden, C.; Eliceiri, K. W.; Carpenter, A. E. Improved structure, function and compatibility for CellProfiler: Modular high-throughput image analysis software. Bioinformatics 2011, 27, 1179–1180.

    Article  Google Scholar 

  36. Kobayashi, S.; Liang, Q. R. Autophagy and mitophagy in diabetic cardiomyopathy. Biochim. Biophys. Acta 2015, 1852, 252–261.

    Article  Google Scholar 

  37. Ryan, B. J.; Hoek, S.; Fon, E. A.; Wade-Martins, R. Mitochondrial dysfunction and mitophagy in Parkinson’s: From familial to sporadic disease. Trends Biochem. Sci. 2015, 40, 200–210.

    Article  Google Scholar 

  38. Burchell, V. S.; Nelson, D. E.; Sanchez-Martinez, A.; Delgado-Camprubi, M.; Ivatt, R. M.; Pogson, J. H.; Randle, S. J.; Wray, S.; Lewis, P. A.; Houlden, H. et al. The Parkinson’s disease–linked proteins Fbxo7 and Parkin interact to mediate mitophagy. Nat. Neurosci. 2013, 16, 1257–1265.

    Article  Google Scholar 

  39. Youle, R. J.; Narendra, D. P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 2011, 12, 9–14.

    Article  Google Scholar 

  40. Li, H. Y.; Ham, A.; Ma, T. C.; Kuo, S. H.; Kanter, E.; Kim, D.; Ko, H. S.; Quan, Y.; Sardi, S. P.; Li, A. Q. Mitochondrial dysfunction and mitophagy defect triggered by heterozygous GBA mutations. Autophagy 2019, 15, 113–130.

    Article  Google Scholar 

  41. Williams, J. A.; Ni, H. M.; Ding, W. X. Mitochondrial dynamics, mitophagy and mitochondrial spheroids in drug-induced liver injury. In Mitochondria in Liver Disease. Han, D.; Kaplowitz, N., Eds.; Apple Academic Press Inc.: Florida, 2015; pp 237.

    Google Scholar 

  42. Maldonado, E. N.; Gooz, M.; DeHart, D. N.; Lemasters, J. J. VDAC opening drugs to induce mitochondrial dysfunction and cell death. Biophys. J. 2015, 108, 369a.

    Article  Google Scholar 

  43. Barutcu, S. A.; Girnius, N.; Vernia, S.; Davis, R. J. Role of the MAPK/cJun NH2-terminal kinase signaling pathway in starvation-induced autophagy. Autophagy 2018, 14, 1586–1595.

    Article  Google Scholar 

  44. Wallot-Hieke, N.; Verma, N.; Schlütermann, D.; Berleth, N.; Deitersen, J.; Böhler, P.; Stuhldreier, F.; Wu, W. X.; Seggewiß, S.; Peter, C. et al. Systematic analysis of ATG13 domain requirements for autophagy induction. Autophagy 2018, 14, 743–763.

    Article  Google Scholar 

  45. Liu, F.; Guan, J. L. FIP200, an essential component of mammalian autophagy is indispensible for fetal hematopoiesis. Autophagy 2011, 7, 229–230.

    Article  Google Scholar 

  46. Lazarou, M.; Sliter, D. A.; Kane, L. A.; Sarraf, S. A.; Wang, C. X.; Burman, J. L.; Sideris, D. P.; Fogel, A. I.; Youle, R. J. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 2015, 524, 309–314.

    Article  Google Scholar 

  47. Li, F. X.; Xu, D. C.; Wang, Y. L.; Zhou, Z. X.; Liu, J. P.; Hu, S. C.; Gong, Y. K.; Yuan, J. Y.; Pan, L. F. Structural insights into the ubiquitin recognition by OPTN (optineurin) and its regulation by TBK1-mediated phosphorylation. Autophagy 2018, 14, 66–79.

    Article  Google Scholar 

  48. Youle, R. J.; Van Der Bliek, A. M. Mitochondrial fission, fusion, and stress. Science 2012, 337, 1062–1065.

    Article  Google Scholar 

  49. Novak, I. Mitophagy: A complex mechanism of mitochondrial removal. Antioxid. Redox Signal. 2012, 17, 794–802.

    Article  Google Scholar 

  50. Vakifahmetoglu-Norberg, H.; Xia, H. G.; Yuan, J. Y. Pharmacologic agents targeting autophagy. J. Clin. Invest. 2015, 125, 5–13.

    Article  Google Scholar 

  51. Xu, Y. Q.; Yuan, J. Y.; Lipinski, M. M. Live imaging and single-cell analysis reveal differential dynamics of autophagy and apoptosis. Autophagy 2013, 9, 1418–1430.

    Article  Google Scholar 

  52. Cristofani, R.; Marelli, M. M.; Cicardi, M. E.; Fontana, F.; Marzagalli, M.; Limonta, P.; Poletti, A.; Moretti, R. M. Dual role of autophagy on docetaxelsensitivity in prostate cancer cells. Cell Death Dis. 2018, 9, 889.

    Article  Google Scholar 

  53. Mauthe, M.; Orhon, I.; Rocchi, C.; Zhou, X. D.; Luhr, M.; Hijlkema, K. J.; Coppes, R. P.; Engedal, N.; Mari, M.; Reggiori, F. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy 2018, 14, 1435–1455.

    Article  Google Scholar 

  54. Quintana-Cabrera, R.; Quirin, C.; Glytsou, C.; Corrado, M.; Urbani, A.; Pellattiero, A.; Calvo, E.; Vázquez, J.; Enríquez, J. A.; Gerle, C. et al. The cristae modulator Optic atrophy 1 requires mitochondrial ATP synthase oligomers to safeguard mitochondrial function. Nat. Commun. 2018, 9, 3399.

    Article  Google Scholar 

  55. Chen, Q. X.; Shao, X. T.; Hao, M. G.; Tian, Z. Q.; Wang, C. R.; Liu, F.; Zhang, K.; Wang, F. S.; Ling, P. X.; Guan, J. L. et al. Quantitative analysis of interactive behavior of mitochondria and lysosomes using structured illumination microscopy. 2018, bioRxiv: https://doi.org/10.1101/445841.

    Book  Google Scholar 

  56. Zemanová, L.; Schenk, A.; Valler, M. J.; Nienhaus, G. U.; Heilker, R. Confocal optics microscopy for biochemical and cellular high-throughput screening. Drug Discov. Today 2003, 8, 1085–1093.

    Article  Google Scholar 

  57. Simm, J.; Klambauer, G.; Arany, A.; Steijaert, M.; Wegner, J. K.; Gustin, E.; Chupakhin, V.; Chong, Y. T.; Vialard, J.; Buijnsters, P. et al. Repurposing high-throughput image assays enables biological activity prediction for drug discovery. Cell Chem. Biol. 2018, 25, 611–618.e3.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Basic Research Program of China (No. 2015CB856300), National Institutes of Health (NIH R35GM128837 to J.D.), Natural Science Foundation of Shandong Province (Nos. ZR2017PH072, ZR2017BH051, and ZR2015QL007), and Key Research and Development Plan of Shandong Province (No. 2018GSF121033). K. Z. was supported by the University of Illinois at Urbana-Champaign. The Light Microscopy Imaging Center (LMIC) is supported in part with funds from Indiana University Office of the Vice Provost for Research. The 3D-SIM microscope was provided by NIH grant NIH1S10OD024988-01.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peixue Ling, Weijiang He, Kai Zhang or Jiajie Diao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Shao, X., Tian, Z. et al. Nanoscale monitoring of mitochondria and lysosome interactions for drug screening and discovery. Nano Res. 12, 1009–1015 (2019). https://doi.org/10.1007/s12274-019-2331-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2331-x

Keywords

Navigation