Skip to main content
Log in

On the impact of local microclimate on building performance simulation. Part I: Prediction of building external conditions

  • Research Article
  • Building Thermal, Lighting, and Acoustics Modeling
  • Published:
Building Simulation Aims and scope Submit manuscript

Abstract

To better predict the effective energy performance of buildings in cities, this study addresses the modelling of local external radiative, thermal and aeraulic conditions. After reviewing existing modelling approaches that are suitable for estimating the building boundary conditions in energy simulation, this paper analyses external conditions derived from a building energy model (BuildSysPro) or a microclimatic model (SOLENE microclimat). Comparisons are made for the different faces of a generic building standing alone or located in an urban environment, with or without a thermally efficient envelope. When the modelling approach is adjusted, the results highlight significant deviations on the estimated radiative temperatures and wind-based quantities around the isolated building. When accounting for surrounding buildings, the results show a substantial reduction in short-wave radiative fluxes, which is explained by an imbalance between solar masks and multireflections, and a reduction in the wind-driven ventilation potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allegrini J, Dorer V, Carmeliet J (2012). Influence of the urban microclimate in street canyons on the energy demand for space cooling and heating of buildings. Energy and Buildings, 55: 823–832.

    Article  Google Scholar 

  • Allegrini J, Kämpf JH, Dorer V, Carmeliet J (2013). Modelling the urban microclimate and its influence on building energy demands of an urban neighbourhood. In: Proceedings of CISBAT 2013 Cleantech for Smart Cities and Buildings. Vol. 2. EPFL Solar Energy and Building Physics Laboratory (LESO-PB), pp. 867–872.

  • Allegrini J, Orehounig K, Mavromatidis G, Ruesch F, Dorer V, Evins R (2015). A review of modelling approaches and tools for the simulation of district-scale energy systems. Renewable and Sustainable Energy Reviews, 52: 1391–1404.

    Article  Google Scholar 

  • Blocken B (2015). Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Building and Environment, 91: 219–245.

    Article  Google Scholar 

  • Bontemps S, Kaemmerlen A, Blatman G, Mora L (2013). Reliability of dynamic simulation models for building energy in the context of low-energy buildings. In: Proceedings of the 13th International IBPSA Building Simulation Conference, Chambéry, France.

  • Bontemps S, Mora L, Schumann M (2016). Validation expérimentale appliquée à la modélisation d’une cellule test de type basse consommation. In: Proceedings of the IBPSA France Conference, Marne-la-Vallée, France.

  • Bouyer J, Inard C, Musy M (2011). Microclimatic coupling as a solution to improve building energy simulation in an urban context. Energy and Buildings, 43: 1549–1559.

    Article  Google Scholar 

  • Bozonnet E (2006). Les microclimats urbains et la demande énergétique du bâti. In: Proceedings of 24émes Rencontres Universitaires de Génie Civil. (in French)

  • Bozonnet E, Musy M, Calmet I, Rodriguez F (2015). Modeling methods to assess urban fluxes and heat island mitigation measures from street to city scale. International Journal of Low-Carbon Technologies, 10: 62–77.

    Article  Google Scholar 

  • Bruse M (2004). Envi-met 3.0: Updated Model Overview. Available at https://doi.org/envi-met.net/documents/papers/overview30.pdf

  • Bueno B, Norford L, Hidalgo J, Pigeon G (2013). The urban weather generator. Journal of Building Performance Simulation, 6: 269–281.

    Article  Google Scholar 

  • BuildSysPro (2018). Documentation, EDF R & D.

  • Chen H, Ooka R, Harayama K, Kato S, Li X (2004). Study on outdoor thermal environment of apartment block in Shenzhen, China with coupled simulation of convection, radiation and conduction. Energy and Buildings, 36: 1247–1258.

    Article  Google Scholar 

  • Clarke J (2007). Energy Simulation in Building Design. Abingdon, UK: Routledge.

    Book  Google Scholar 

  • CNRM-UMR (2018). CNRM-UMR 3589. Town Energy Balance website. Available at https://doi.org/www.umr-cnrm.fr/spip.php?article199

  • Cóstola D, Blocken B, Hensen JLM (2009). Overview of pressure coefficient data in building energy simulation and airflow network programs. Building and Environment, 44: 2027–2036.

    Article  Google Scholar 

  • CSTB (2012). RT2012: Régles Th-U, fascicule 4: Parois opaques.

  • de la Flor FS, Domínguez SA (2004). Modelling microclimate in urban environments and assessing its influence on the performance of surrounding buildings. Energy and Buildings, 36: 403–413.

    Article  Google Scholar 

  • EnergyPlus (2018). Documentation, U.S. Department of Energy.

  • Franke J (2006). Recommendations of the COST action C14 on the use of CFD in predicting pedestrian wind environment. In: Proceedings of the 4th International Symposium on Computational Wind Engineering, Yokohama, Japan, pp. 529–532.

  • Frayssinet L, Merlier L, Kuznik F, Hubert J-L, Milliez M, Roux J-J (2017). Modeling the heating and cooling energy demand of urban buildings at city scale. Renewable and Sustainable Energy Reviews, 81: 2318–2327.

    Article  Google Scholar 

  • Ghiaus C, Allard F, Santamouris M, Georgakis C, Nicol F (2006). Urban environment influence on natural ventilation potential. Building and Environment, 41: 395–406.

    Article  Google Scholar 

  • Goffart J (2016). Donnäes d’entrée: climat. In: Energétique des bâtiments et simulation thermique. Blanche BTP. Eyrolles, pp. 231–240.

  • Gros A, Bozonnet E, Inard C, Musy M (2016). Simulation tools to assess microclimate and building energy: A case study on the design of a new district. Energy and Buildings, 114: 112–122.

    Article  Google Scholar 

  • Jokisalo J, Kurnitski J, Korpi M, Kalamees T, Vinha J (2009). Building leakage, infiltration, and energy performance analyses for Finnish detached houses. Building and Environment, 44: 377–387.

    Article  Google Scholar 

  • Le Bras J, Masson V (2015). A fast and spatialized urban weather generator for long-term urban studies at the city-scale. Frontiers in Earth Science, 3: 27.

    Article  Google Scholar 

  • Lemonsu A, Grimmond CSB, Masson V (2004). Modeling the surface energy balance of the core of an old mediterranean city: Marseille. Journal of Applied Meteorology, 43: 312–327.

    Article  Google Scholar 

  • Malys L, Musy M, Inard C (2015). Microclimate and building energy consumption: Study of different coupling methods. Advances in Building Energy Research, 9: 151–174.

    Article  Google Scholar 

  • Masson V (2000). A physically-based scheme for the urban energy budget in atmospheric models. Boundary-Layer Meteorology, 94: 357–397.

    Article  MathSciNet  Google Scholar 

  • Masson V, Marchadier C, Adolphe L, Aguejdad R, Avner P, Bonhomme M, Bretagne G, Briottet X, Bueno B, de Munck C, et al. (2014). Adapting cities to climate change: A systemic modelling approach. Urban Climate, 10: 407–429.

    Article  Google Scholar 

  • Merlier L, Kuznik F, Rusaouën G, Salat S (2018). Derivation of generic typologies for microscale urban airflow studies. Sustainable Cities and Society, 36: 71–80.

    Article  Google Scholar 

  • Merlier L, Frayssinet L, Johannes K, Kuznik F (2019). On the impact of local microclimate on building performance simulation. Part II: Effect of external conditions on the dynamic thermal behavior of buildings. Building Simulation, https://doi.org/10.1007/s12273-019-0508-6.

  • Météo France (2017). Météo et climat: données climatiques de la station de lyon.

  • Mirsadeghi M, Cóstola D, Blocken B, Hensen JLM (2013). Review of external convective heat transfer coefficient models in building energy simulation programs: Implementation and uncertainty. Applied Thermal Engineering, 56: 134–151.

    Article  Google Scholar 

  • Moonen P, Defraeye T, Dorer V, Blocken B, Carmeliet J (2012). Urban Physics: Effect of the micro-climate on comfort, health and energy demand. Frontiers of Architectural Research, 1: 197–228.

    Article  Google Scholar 

  • Morille B, Lauzet N, Musy M (2015). SOLENE-microclimate: A tool to evaluate envelopes efficiency on energy consumption at district scale. Energy Procedia, 78: 1165–1170.

    Article  Google Scholar 

  • Musy M, Bozonnet E (2016). Données d’entrée: Microclimat et environnement proche. In: Energétique des bâtiments et simulation thermique. Blanche BTP. Eyrolles, pp. 240–256.

  • Musy M, Calmet I, Bozonnet E, Rodriguez F (2012). Modélisation des interactions ville climat energie. Références Modélisation urbaine: de la représentation au projet, 16–33.

  • Musy M, Malys L, Morille B, Inard C (2015). The use of SOLENE-microclimat model to assess adaptation strategies at the district scale. Urban Climate, 14: 213–223.

    Article  Google Scholar 

  • Nunez M, Oke TR (1977). The energy balance of an urban canyon. Journal of Applied Meteorology, 16: 11–19.

    Article  Google Scholar 

  • Oke TR (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455): 1–24.

    Google Scholar 

  • Oke TR (2002). Boundary Layer Climates, 2nd edn. Abingdon, UK: Routlege.

    Book  Google Scholar 

  • Penicaud H (2016). Introduction. In: Energétique des bâtiments et simulation thermique. Blanche BTP. Eyrolles. pp. 17–21.

  • Pigeon G, Zibouche K, Bueno B, Le Bras J, Masson V (2014). Improving the capabilities of the Town Energy Balance model with up-to-date building energy simulation algorithms: An application to a set of representative buildings in Paris. Energy and Buildings, 76: 1–14.

    Article  Google Scholar 

  • Plessis G, Kaemmerlen A, Lindsay A (2014). BuildSysPro: A Modelica library for modelling buildings and energy systems. In: Proceedings of the 10th International Modelica Conference, Lund, Sweden, pp. 1161–1169.

  • Ramponi R, Gaetani I, Angelotti A (2014). Influence of the urban environment on the effectiveness of natural night-ventilation of an office building. Energy and Buildings, 78: 25–34.

    Article  Google Scholar 

  • Robinson D, Haldi F, Kämpf J, Leroux P, Perez D, Rasheed A, Wilke U (2009). CitySim: Comprehensive micro-simulation of resource flows for sustainable urban planning. In: Proceedings of the 11th International IBPSA Building Simulation Conference, Glasgow, UK, pp. 1083–1090.

  • Rochard U, Shanthirablan S, Brejon C, Chateau le Bras M (2015). Bâtiments résidentiels: Typologie du parc existant et solutions exemplaires pour la rénovation énergétique en France. Technical Report.

  • Rodler A, Guernouti S, Musy M, Bouyer J (2018). Thermal behaviour of a building in its environment: Modelling, experimentation, and comparison. Energy and Buildings, 168: 19–34.

    Article  Google Scholar 

  • Roux J, Kuznik F (2016). Modélisation thermique du bâtiment. In: Energétique des bâtiments et simulation thermique. Blanche BTP. Eyrolles. pp. 26–43.

  • Santamouris M (2014). On the energy impact of urban heat island and global warming on buildings. Energy and Buildings, 82: 100–113.

    Article  Google Scholar 

  • Santamouris M, Cartalis C, Synnefa A, Kolokotsa D (2015). On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings: A review. Energy and Buildings, 98: 119–124.

    Article  Google Scholar 

  • Santamouris M, Papanikolaou N, Livada I, Koronakis I, Georgakis C, Argiriou A, Assimakopoulos DN (2001). On the impact of urban climate on the energy consumption of buildings. Solar Energy, 70: 201–216.

    Article  Google Scholar 

  • Schlünzen KH, Grawe D, Bohnenstengel SI, Schlüter I, Koppmann R (2011). Joint modelling of obstacle induced and mesoscale changes—Current limits and challenges. Journal of Wind Engineering and Industrial Aerodynamics, 99: 217–225.

    Article  Google Scholar 

  • Schumann M, Charrier B, Plessis G, Wall-Ribot B (2016). BuildSysPro un bibliothéque Modelica open source pour l’énergétique des bâtiments et des quartiers. In: Proceedings of the IBPSA France Conference. Marne-la-Vallée, France.

  • Sun Y, Heo Y, Xie H, Tan M, Wu J, Augenbroe G (2011). Uncertainity quantification of microclimate variables in building energy simulation. In: Proceedings of the 12th International IBPSA Building Simulation Conference, Sydney, Australia, pp. 2423–2430.

  • Sun Y, Augenbroe G (2014). Urban heat island effect on energy application studies of office buildings. Energy and Buildings, 77: 171–179.

    Article  Google Scholar 

  • Sun Y, Heo Y, Tan M, Xie H, Jeff Wu C, Augenbroe G (2014). Uncertainty quantification of microclimate variables in building energy models. Journal of Building Performance Simulation, 7: 17–32.

    Article  Google Scholar 

  • Tominaga Y, Mochida A, Yoshie R, Kataoka H, Nozu T, Yoshikawa M, Shirasawa T (2008). AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. Journal of Wind Engineering and Industrial Aerodynamics, 96: 1749–1761.

    Article  Google Scholar 

  • Toparlar Y, Blocken B, Maiheu B, van Heijst GJF (2017). A review on the CFD analysis of urban microclimate. Renewable and Sustainable Energy Reviews, 80: 1613–1640.

    Article  Google Scholar 

  • Yang X, Zhao L, Bruse M, Meng Q (2012). An integrated simulation method for building energy performance assessment in urban environments. Energy and Buildings, 54: 243–251.

    Article  Google Scholar 

  • Yi YK, Feng N (2013). Dynamic integration between building energy simulation (BES) and computational fluid dynamics (CFD) simulation for building exterior surface. Building Simulation, 6: 297–308.

    Article  Google Scholar 

Download references

Acknowledgements

The authors warmly thank Jean-Luc Hubert and Maya Milliez from EDF R&D and the BHEE for their support during this work, as well as the CRENAU laboratory for providing SOLENE microclimat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucie Merlier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merlier, L., Frayssinet, L., Johannes, K. et al. On the impact of local microclimate on building performance simulation. Part I: Prediction of building external conditions. Build. Simul. 12, 735–746 (2019). https://doi.org/10.1007/s12273-019-0507-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12273-019-0507-7

Keywords

Navigation