Skip to main content
Log in

Human milk oligosaccharides 3′-sialyllactose and 6′-sialyllactose attenuate LPS-induced lung injury by inhibiting STAT1 and NF-κB signaling pathways

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Acute lung injury (ALI) is the leading cause of respiratory diseases induced by uncontrolled inflammation and cell death. Lipopolysaccharide (LPS) is a major trigger of ALI in the progression through macrophage differentiation and the accelerated release of pro-inflammatory cytokines. The present study aimed to investigate the protective effects of human milk oligosaccharides, specifically 3′-sialyllactose (3′-SL) and 6′-sialyllactose (6′-SL), on LPS-induced ALI and elucidate their underlying signaling pathways. The inhibitory effects of 3′-SL and 6′-SL on inflammation were evaluated using LPS-treated RAW 264.7 macrophages. To establish the ALI model, mice were treated with 10 mg/kg LPS for 24 h. Histological changes in the lung tissues were assessed using hematoxylin and eosin staining and immunofluorescence. LPS causes thickening of the alveolar wall infiltration of immune cells in lung tissues and increased serum levels of TNF-α, IL-1β, and GM-CSF. However, these effects were significantly alleviated by 100 mg/kg of 3′-SL and 6′-SL. Consistent with the inhibitory effects of 3′-SL and 6′-SL on LPS-induced pro-inflammatory cytokine secretion in serum, 3′-SL and 6′-SL suppressed mRNA expression of TNF-α, IL-1β, MCP-1, iNOS, and COX2 in LPS-induced RAW 264.7 cells. Mechanistically, 3′-SL and 6′-SL abolished LPS-mediated phosphorylation of NF-κB and STAT1. Interestingly, fludarabine treatment, a STAT1 inhibitor, did not affect LPS-mediated NF-κB phosphorylation. In summary, 3′-SL and 6′-SL protect LPS-induced macrophage activation and ALI through the STAT1 and NF-κB signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Acknowledgements

This research was funded by the National Research Foundation of Korea (KNRF- 2022R1A2C4001776).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Sun Heo.

Ethics declarations

Conflict of interest

Lila Kim is an employee of GeneChem Inc. The other authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1232 KB)

Supplementary file2 (PDF 260 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Jeon, H., Le Lam Nguyen, T. et al. Human milk oligosaccharides 3′-sialyllactose and 6′-sialyllactose attenuate LPS-induced lung injury by inhibiting STAT1 and NF-κB signaling pathways. Arch. Pharm. Res. 46, 897–906 (2023). https://doi.org/10.1007/s12272-023-01470-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-023-01470-1

Keywords

Navigation