Skip to main content
Log in

In silico drug repositioning: from large-scale transcriptome data to therapeutics

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Drug repositioning is an attractive alternative to conventional drug development when new beneficial effects of old drugs are clinically validated because pharmacokinetic and safety profiles are generally already available. Since ~ 30% of drugs newly approved by the US food and drug administration (FDA) are developed through drug repositioning, identifying novel usage for existing drugs is an emerging strategy for developing disease treatments. With advances in next-generation sequencing technologies, available transcriptome data related to diseases have expanded rapidly. Harnessing these resources enables a better understanding of disease mechanisms and drug mode of action (MOA), and moves toward personalized pharmacotherapy. In this review, we briefly outline publicly available large-scale transcriptome databases and tools for drug repositioning. We also highlight recent approaches leading to the discovery of novel drug targets, drug response biomarkers, drug indications, and drug MOA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Argyriou AA, Iconomou G, Kalofonos HP (2008) Bortezomib-induced peripheral neuropathy in multiple myeloma: a comprehensive review of the literature. Blood 112:1593–1599

    Article  CAS  PubMed  Google Scholar 

  • Bae GY, Hong SK, Park JR, Kwon OS, Kim KT, Koo J, Oh E, Cha HJ (2016) Chronic TGFbeta stimulation promotes the metastatic potential of lung cancer cells by Snail protein stabilization through integrin beta3-Akt-GSK3beta signaling. Oncotarget 7:25366–25376

    PubMed  PubMed Central  Google Scholar 

  • Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov GV, Sonkin D, Reddy A, Liu M, Murray L, Berger MF, Monahan JE, Morais P, Meltzer J, Korejwa A, Jane-Valbuena J, Mapa FA, Thibault J, Bric-Furlong E, Raman P, Shipway A, Engels IH, Cheng J, Yu GK, Yu J, Aspesi P Jr, De Silva M, Jagtap K, Jones MD, Wang L, Hatton C, Palescandolo E, Gupta S, Mahan S, Sougnez C, Onofrio RC, Liefeld T, Macconaill L, Winckler W, Reich M, Li N, Mesirov JP, Gabriel SB, Getz G, Ardlie K, Chan V, Myer VE, Weber BL, Porter J, Warmuth M, Finan P, Harris JL, Meyerson M, Golub TR, Morrissey MP, Sellers WR, Schlegel R, Garraway LA (2012) The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483:603–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campillos M, Kuhn M, Gavin AC, Jensen LJ, Bork P (2008) Drug target identification using side-effect similarity. Science 321:263–266

    Article  CAS  PubMed  Google Scholar 

  • Cancer Cell Line Encyclopedia, Genomics of Drug Sensitivity in Cancer (2015) Pharmacogenomic agreement between two cancer cell line data sets. Nature 528:84–87

    Article  CAS  Google Scholar 

  • Cancer Genome Atlas Research, Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM (2013) The cancer genome atlas pan-cancer analysis project. Nat Genet 45:1113–1120

    Article  CAS  Google Scholar 

  • Chen B, Butte AJ (2016) Leveraging big data to transform target selection and drug discovery. Clin Pharmacol Ther 99:285–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho SJ, Kim KT, Jeong HC, Park JC, Kwon OS, Song YH, Shin JG, Kang S, Kim W, Shin HD, Lee MO, Moon SH, Cha HJ (2018) Selective elimination of culture-adapted human embryonic stem cells with bh3 mimetics. Stem Cell Rep 11:1244–1256

    Article  CAS  Google Scholar 

  • Clark NR, Hu KS, Feldmann AS, Kou Y, Chen EY, Duan Q, Ma’ayan A (2014) The characteristic direction: a geometrical approach to identify differentially expressed genes. BMC Bioinform 15:79

    Article  Google Scholar 

  • Costa FF (2014) Big data in biomedicine. Drug Discov Today 19:433–440

    Article  PubMed  Google Scholar 

  • Duan Q, Reid SP, Clark NR, Wang Z, Fernandez NF, Rouillard AD, Readhead B, Tritsch SR, Hodos R, Hafner M, Niepel M, Sorger PK, Dudley JT, Bavari S, Panchal RG, Ma’ayan A (2016) L1000CDS(2): LINCS L1000 characteristic direction signatures search engine. NPJ Syst Biol Appl 2:16015

    Article  PubMed  PubMed Central  Google Scholar 

  • Dudley JT, Sirota M, Shenoy M, Pai RK, Roedder S, Chiang AP, Morgan AA, Sarwal MM, Pasricha PJ, Butte AJ (2011) Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Sci Transl Med 3:96ra76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fotis C, Antoranz A, Hatziavramidis D, Sakellaropoulos T, Alexopoulos LG (2018) Network-based technologies for early drug discovery. Drug Discov Today 23:626–635

    Article  CAS  PubMed  Google Scholar 

  • Hernandez JJ, Pryszlak M, Smith L, Yanchus C, Kurji N, Shahani VM, Molinski SV (2017) Giving drugs a second chance: overcoming regulatory and financial hurdles in repurposing approved drugs as cancer therapeutics. Front Oncol 7:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Hizukuri Y, Sawada R, Yamanishi Y (2015) Predicting target proteins for drug candidate compounds based on drug-induced gene expression data in a chemical structure-independent manner. BMC Med Genom 8:82

    Article  CAS  Google Scholar 

  • Hong SK, Park JR, Kwon OS, Kim KT, Bae GY, Cha HJ (2016) Induction of integrin beta3 by sustained ERK activity promotes the invasiveness of TGFbeta-induced mesenchymal tumor cells. Cancer Lett 376:339–346

    Article  CAS  PubMed  Google Scholar 

  • Hong SK, Lee H, Kwon OS, Song NY, Lee HJ, Kang S, Kim JH, Kim M, Kim W, Cha HJ (2018) Large-scale pharmacogenomics based drug discovery for ITGB3 dependent chemoresistance in mesenchymal lung cancer. Mol Cancer 17:175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682–690

    Article  CAS  PubMed  Google Scholar 

  • Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour CD, Bennett HA, Coffey E, Dai H, He YD, Kidd MJ, King AM, Meyer MR, Slade D, Lum PY, Stepaniants SB, Shoemaker DD, Gachotte D, Chakraburtty K, Simon J, Bard M, Friend SH (2000) Functional discovery via a compendium of expression profiles. Cell 102:109–126

    Article  CAS  PubMed  Google Scholar 

  • Iorio F, Bosotti R, Scacheri E, Belcastro V, Mithbaokar P, Ferriero R, Murino L, Tagliaferri R, Brunetti-Pierri N, Isacchi A, Di Bernardo D (2010) Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc Natl Acad Sci USA 107:14621–14626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isik Z, Baldow C, Cannistraci CV, Schroeder M (2015) Drug target prioritization by perturbed gene expression and network information. Sci Rep 5:17417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwata M, Sawada R, Iwata H, Kotera M, Yamanishi Y (2017) Elucidating the modes of action for bioactive compounds in a cell-specific manner by large-scale chemically-induced transcriptomics. Sci Rep 7:40164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahchan NS, Dudley JT, Mazur PK, Flores N, Yang D, Palmerton A, Zmoos AF, Vaka D, Tran KQ, Zhou M, Krasinska K, Riess JW, Neal JW, Khatri P, Park KS, Butte AJ, Sage J (2013) A drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine tumors. Cancer Discov 3:1364–1377

    Article  CAS  PubMed  Google Scholar 

  • Jin G, Wong ST (2014) Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discov Today 19:637–644

    Article  PubMed  Google Scholar 

  • Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M (2018) New approach for understanding genome variations in KEGG. Nucleic Acids Res 47:D590–D595

    Article  PubMed Central  CAS  Google Scholar 

  • Kannan L, Ramos M, Re A, El-Hachem N, Safikhani Z, Gendoo DM, Davis S, Gomez-Cabrero D, Castelo R, Hansen KD, Carey VJ, Morgan M, Culhane AC, Haibe-Kains B, Waldron L (2016) Public data and open source tools for multi-assay genomic investigation of disease. Brief Bioinform 17:603–615

    Article  CAS  PubMed  Google Scholar 

  • Kelloff GJ, Sigman CC (2012) Cancer biomarkers: selecting the right drug for the right patient. Nat Rev Drug Discov 11:201–214

    Article  CAS  PubMed  Google Scholar 

  • Kim RS, Goossens N, Hoshida Y (2016) Use of big data in drug development for precision medicine. Expert Rev Precis Med Drug Dev 1:245–253

    Article  PubMed  PubMed Central  Google Scholar 

  • Kondo T, Imamura K, Funayama M, Tsukita K, Miyake M, Ohta A, Woltjen K, Nakagawa M, Asada T, Arai T, Kawakatsu S, Izumi Y, Kaji R, Iwata N, Inoue H (2017) iPSC-based compound screening and in vitro trials identify a synergistic anti-amyloid beta combination for Alzheimer’s disease. Cell Rep 21:2304–2312

    Article  CAS  PubMed  Google Scholar 

  • Kwon OS, Oh E, Park JR, Lee JS, Bae GY, Koo JH, Kim H, Choi YL, Choi YS, Kim J, Cha HJ (2015) GalNAc-T14 promotes metastasis through Wnt dependent HOXB9 expression in lung adenocarcinoma. Oncotarget 6:41916–41928

    PubMed  PubMed Central  Google Scholar 

  • Kwon O-S, Lee H, Kong H-J, Park JE, Lee W, Kang S, Kim M, Kim W, Cha H-J (2018) In silico Drug Repositioning of bortezomib to reverse metastatic effect of GALNT14 in lung cancer. https://doi.org/10.1101/394163

  • Lamb J (2007) The connectivity map: a new tool for biomedical research. Nat Rev Cancer 7:54–60

    Article  CAS  PubMed  Google Scholar 

  • Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, Reich M, Hieronymus H, Wei G, Armstrong SA, Haggarty SJ, Clemons PA, Wei R, Carr SA, Lander ES, Golub TR (2006) The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313:1929–1935

    Article  CAS  PubMed  Google Scholar 

  • Lantermann AB, Chen D, Mccutcheon K, Hoffman G, Frias E, Ruddy D, Rakiec D, Korn J, Mcallister G, Stegmeier F, Meyer MJ, Sharma SV (2015) Inhibition of casein kinase 1 alpha prevents acquired drug resistance to erlotinib in EGFR-mutant non-small cell lung cancer. Cancer Res 75:4937–4948

    Article  CAS  PubMed  Google Scholar 

  • Lazo JS, Sharlow ER (2016) Drugging undruggable molecular cancer targets. Annu Rev Pharmacol Toxicol 56:23–40

    Article  CAS  PubMed  Google Scholar 

  • Lee ES, Son DS, Kim SH, Lee J, Jo J, Han J, Kim H, Lee HJ, Choi HY, Jung Y, Park M, Lim YS, Kim K, Shim Y, Kim BC, Lee K, Huh N, Ko C, Park K, Lee JW, Choi YS, Kim J (2008) Prediction of recurrence-free survival in postoperative non-small cell lung cancer patients by using an integrated model of clinical information and gene expression. Clin Cancer Res 14:7397–7404

    Article  CAS  PubMed  Google Scholar 

  • Lee MO, Moon SH, Jeong HC, Yi JY, Lee TH, Shim SH, Rhee YH, Lee SH, Oh SJ, Lee MY, Han MJ, Cho YS, Chung HM, Kim KS, Cha HJ (2013) Inhibition of pluripotent stem cell-derived teratoma formation by small molecules. Proc Natl Acad Sci USA 110:E3281–E3290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H, Kang S, Kim W (2016) Drug repositioning for cancer therapy based on large-scale drug-induced transcriptional signatures. PLoS ONE 11:e0150460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee BK, Tiong KH, Chang JK, Liew CS, Abdul Rahman ZA, Tan AC, Khang TF, Cheong SC (2017) DeSigN: connecting gene expression with therapeutics for drug repurposing and development. BMC Genom 18:934

    Article  CAS  Google Scholar 

  • Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P, Mesirov JP (2011) Molecular signatures database (MSigDB) 3.0. Bioinformatics 27:1739–1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novac N (2013) Challenges and opportunities of drug repositioning. Trends Pharmacol Sci 34:267–272

    Article  CAS  PubMed  Google Scholar 

  • Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, Doig A, Guilliams T, Latimer J, Mcnamee C, Norris A, Sanseau P, Cavalla D, Pirmohamed M (2018) Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov 18:41

    Article  PubMed  CAS  Google Scholar 

  • Reddy AS, Zhang S (2013) Polypharmacology: drug discovery for the future. Expert Rev Clin Pharmacol 6:41–47

    Article  CAS  PubMed  Google Scholar 

  • Rees MG, Seashore-Ludlow B, Cheah JH, Adams DJ, Price EV, Gill S, Javaid S, Coletti ME, Jones VL, Bodycombe NE, Soule CK, Alexander B, Li A, Montgomery P, Kotz JD, Hon CS, Munoz B, Liefeld T, Dancik V, Haber DA, Clish CB, Bittker JA, Palmer M, Wagner BK, Clemons PA, Shamji AF, Schreiber SL (2016) Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nat Chem Biol 12:109–116

    Article  CAS  PubMed  Google Scholar 

  • Rhee SY, Wood V, Dolinski K, Draghici S (2008) Use and misuse of the gene ontology annotations. Nat Rev Genet 9:509–515

    Article  CAS  PubMed  Google Scholar 

  • Sam E, Athri P (2019) Web-based drug repurposing tools: a survey. Brief Bioinform 20:299–316

    Article  PubMed  Google Scholar 

  • Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, Dimitriadoy S, Liu DL, Kantheti HS, Saghafinia S, Chakravarty D, Daian F, Gao Q, Bailey MH, Liang WW, Foltz SM, Shmulevich I, Ding L, Heins Z, Ochoa A, Gross B, Gao J, Zhang H, Kundra R, Kandoth C, Bahceci I, Dervishi L, Dogrusoz U, Zhou W, Shen H, Laird PW, Way GP, Greene CS, Liang H, Xiao Y, Wang C, Iavarone A, Berger AH, Bivona TG, Lazar AJ, Hammer GD, Giordano T, Kwong LN, Mcarthur G, Huang C, Tward AD, Frederick MJ, Mccormick F, Meyerson M, Cancer Genome Atlas Research, Van Allen EM, Cherniack AD, Ciriello G, Sander C, Schultz N (2018) Oncogenic signaling pathways in the cancer genome atlas. Cell 173(321–337):e10

    Google Scholar 

  • Sawada R, Iwata M, Tabei Y, Yamato H, Yamanishi Y (2018) Predicting inhibitory and activatory drug targets by chemically and genetically perturbed transcriptome signatures. Sci Rep 8:156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scannell JW, Blanckley A, Boldon H, Warrington B (2012) Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov 11:191–200

    Article  CAS  PubMed  Google Scholar 

  • Sirota M, Dudley JT, Kim J, Chiang AP, Morgan AA, Sweet-Cordero A, Sage J, Butte AJ (2011) Discovery and preclinical validation of drug indications using compendia of public gene expression data. Sci Transl Med 3:96ra77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, Gould J, Davis JF, Tubelli AA, Asiedu JK, Lahr DL, Hirschman JE, Liu Z, Donahue M, Julian B, Khan M, Wadden D, Smith IC, Lam D, Liberzon A, Toder C, Bagul M, Orzechowski M, Enache OM, Piccioni F, Johnson SA, Lyons NJ, Berger AH, Shamji AF, Brooks AN, Vrcic A, Flynn C, Rosains J, Takeda DY, Hu R, Davison D, Lamb J, Ardlie K, Hogstrom L, Greenside P, Gray NS, Clemons PA, Silver S, Wu X, Zhao WN, Read-Button W, Wu X, Haggarty SJ, Ronco LV, Boehm JS, Schreiber SL, Doench JG, Bittker JA, Root DE, Wong B, Golub TR (2017) A next generation connectivity map: L1000 platform and the FIRST 1,000,000 profiles. Cell 171(1437–1452):e17

    Google Scholar 

  • Tsherniak A, Vazquez F, Montgomery PG, Weir BA, Kryukov G, Cowley GS, Gill S, Harrington WF, Pantel S, Krill-Burger JM, Meyers RM, Ali L, Goodale A, Lee Y, Jiang G, Hsiao J, Gerath WFJ, Howell S, Merkel E, Ghandi M, Garraway LA, Root DE, Golub TR, Boehm JS, Hahn WC (2017) Defining a cancer dependency map. Cell 170(564–576):e16

    Google Scholar 

  • Van Noort V, Scholch S, Iskar M, Zeller G, Ostertag K, Schweitzer C, Werner K, Weitz J, Koch M, Bork P (2014) Novel drug candidates for the treatment of metastatic colorectal cancer through global inverse gene-expression profiling. Cancer Res 74:5690–5699

    Article  PubMed  CAS  Google Scholar 

  • Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, Kaffenberger SD, Eaton JK, Shimada K, Aguirre AJ, Viswanathan SR, Chattopadhyay S, Tamayo P, Yang WS, Rees MG, Chen S, Boskovic ZV, Javaid S, Huang C, Wu X, Tseng YY, Roider EM, Gao D, Cleary JM, Wolpin BM, Mesirov JP, Haber DA, Engelman JA, Boehm JS, Kotz JD, Hon CS, Chen Y, Hahn WC, Levesque MP, Doench JG, Berens ME, Shamji AF, Clemons PA, Stockwell BR, Schreiber SL (2017) Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547:453–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Sun J, Zhou S, Wan C, Qin S, Li C, He L, Yang L (2013) Prediction of drug-target interactions for drug repositioning only based on genomic expression similarity. PLoS Comput Biol 9:e1003315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winter GE, Radic B, Mayor-Ruiz C, Blomen VA, Trefzer C, Kandasamy RK, Huber KVM, Gridling M, Chen D, Klampfl T, Kralovics R, Kubicek S, Fernandez-Capetillo O, Brummelkamp TR, Superti-Furga G (2014) The solute carrier SLC35F2 enables YM155-mediated DNA damage toxicity. Nat Chem Biol 10:768–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia X, Wong ST (2012) Concise review: a high-content screening approach to stem cell research and drug discovery. Stem Cells 30:1800–1807

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Xing Z, Ma M, Wang N, Cai YD, Chen L, Xu X (2014) Gene ontology and KEGG enrichment analyses of genes related to age-related macular degeneration. Biomed Res Int 2014:450386

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) via grants funded by the Korea government (MSIT; NRF-2017R1A6A3A11030794, NRF-2017M3C9A5028690, and NRF-2019R1C1C1008710) to HSL, WKK, and OSK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haeseung Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, OS., Kim, W., Cha, HJ. et al. In silico drug repositioning: from large-scale transcriptome data to therapeutics. Arch. Pharm. Res. 42, 879–889 (2019). https://doi.org/10.1007/s12272-019-01176-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-019-01176-3

Keywords

Navigation