Skip to main content
Log in

Role of silibinin in the management of diabetes mellitus and its complications

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Diabetes mellitus is globally approaching epidemic proportions and acts as a major cause of a number of serious health problems diagnosed as diabetic complications. The current oral drugs in the treatment of diabetes and its complications could meet some but not all of the patients’ needs, and the development of novel drugs with a hypoglycemic effect is urgently required. Silibinin, a flavonolignan traditionally used for the treatment of gallbladder and hepatic diseases, was reported to improve glycemic homeostasis by improving the activity of pancreatic β-cells, increasing insulin sensitivity of liver and muscle cells, and decreasing lipid deposition in adipocytes. Researches also indicated the effectiveness of silibinin in controlling several diabetic complications including neuropathy, retinopathy, impaired healing, hepatopathy, cardiomyopathy, nephropathy, and osteoporosis. In this review, we summarize the recent anti-diabetes findings of silibinin and clarify the underlying pharmacological mechanisms, and update the knowledge in understanding the role of silibinin in control of diabetic complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alhusban A, Alkhazaleh E, El-Elimat T (2017) Silymarin ameliorates diabetes-induced proangiogenic response in brain endothelial cells through a GSK-3beta inhibition-induced reduction of VEGF release. J Diabetes Res. https://doi.org/10.1155/2017/2537216

    Article  PubMed  PubMed Central  Google Scholar 

  • American Diabetes Association (2011) Diagnosis and classification of diabetes mellitus. Diabetes Care 34:S62–S69

    Article  PubMed Central  Google Scholar 

  • Amiri M, Motamedi P, Vakili L, Dehghani N, Kiani F, Taheri Z, Torkamaneh S, Nasri P, Nasri H (2014) Beyond the liver protective efficacy of silymarin; bright renoprotective effect on diabetic kidney disease. J Nephropharmacol 3(2):25–26

    PubMed  PubMed Central  Google Scholar 

  • Anestopoulos I, Kavo A, Tentes I, Kortsaris A, Panayiotidis M, Lazou A, Pappa A (2013) Silibinin protects H9c2 cardiac cells from oxidative stress and inhibits phenylephrine-induced hypertrophy: potential mechanisms. J Nutr Biochem 24(3):586–594

    Article  PubMed  CAS  Google Scholar 

  • Anuradha R, Saraswati M, Kumar KG, Rani SH (2014) Apoptosis of beta cells in diabetes mellitus. DNA Cell Biol 33:743–748

    Article  PubMed  CAS  Google Scholar 

  • Astrup A, Finer N (2000) Redefining Type 2 diabetes: diabesity or obesity dependent diabetes mellitus? Obes Rev 1:57–59

    Article  PubMed  CAS  Google Scholar 

  • Balszuweit F, John H, Schmidt A, Kehe K, Thiermann H, Steinritz D (2013) Silibinin as a potential therapeutic for sulfur mustard injuries. Chem Biol Interact 206(3):496–504

    Article  PubMed  CAS  Google Scholar 

  • Barbagallo I, Vanella L, Cambria MT, Tibullo D, Godos J, Guarnaccia L, Zappalà A, Galvano F, Li Volti G (2015) Silibinin regulates lipid metabolism and differentiation in functional human adipocytes. Front Pharmacol 6:309

    PubMed  Google Scholar 

  • Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84(1):277–359

    Article  PubMed  CAS  Google Scholar 

  • Chang CL, Lin Y, Bartolome AP, Chen YC, Chiu SC, Yang WC (2013) Herbal therapies for type 2 diabetes mellitus: chemistry, biology, and potential application of selected plants and compounds. Evid-Based Compl Alt 2013:378657

    Google Scholar 

  • Chen K, Jin P, He HH, Xie YH, Xie XY, Mo ZH (2011) Overexpression of Insig-1 protects β cell against glucolipotoxicity via SREBP-1c. J Biomed Sci 18:57

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen K, Zhao L, He H, Wan X, Wang F, Mo Z (2014) Silibinin protects beta cells from glucotoxicity through regulation of the Insig-1/SREBP-1c pathway. Int J Mol Med 34:1073–1080

    Article  PubMed  CAS  Google Scholar 

  • Chen K, Xu J, He H, Zhao L, Xiong J, Mo Z (2015) Protective effect of silibinin on islet beta cells in C57BL/6 J mice fed a highfat diet. J Cent South Univ Med Sci 40:165–170

    CAS  Google Scholar 

  • Cheng B, Gong H, Li X, Sun Y, Zhang X, Chen H, Liu X, Zheng L, Huang K (2012) Silibinin inhibits the toxic aggregation of human islet amyloid polypeptide. Biochem Bioph Res Commun 419:495–499

    Article  CAS  Google Scholar 

  • Colturato CP, Constantin RP, Maeda AS Jr, Constantin RP, Yamamoto NS, Bracht A, Ishii-Iwamoto E, Constantin J (2012) Metabolic effects of silibinin in the rat liver. Chem-Biol Interact 195:119–132

    Article  PubMed  CAS  Google Scholar 

  • Das S, Roy P, Pal R, Auddy RG, Chakraborti AS, Mukherjee A (2014) Engineered silybin nanoparticles educe efficient control in experimental diabetes. PLoS ONE 9(7):e101818

    Article  PubMed  PubMed Central  Google Scholar 

  • Detaille D, Sanchez C, Sanz N, Lopez-Novoa JM, Leverve X, Elmir MY (2008) Interrelation between the inhibition of glycolytic flux by silibinin and the lowering of mitochondrial ROS production in perifused rat hepatocytes. Life Sci 82:1070–1076

    Article  PubMed  CAS  Google Scholar 

  • Dey A, Lakshmanan J (2013) The role of antioxidants and other agents in alleviating hyperglycemia mediated oxidative stress and injury in liver. Food Funct 4(8):1148–1184

    Article  PubMed  CAS  Google Scholar 

  • Di Cesare Mannelli L, Zanardelli M, Failli P, Ghelardini C (2012) Oxaliplatin-induced neuropathy: oxidative stress as pathological mechanism. Protective effect of silibinin. J Pain 13(3):276–284

    Article  Google Scholar 

  • Di Cesare Mannelli L, Zanardelli M, Failli P, Ghelardini C (2013) Oxaliplatin-induced oxidative stress in nervous system-derived cellular models: could it correlate with in vivo neuropathy? Free Radic Biol Med 61:143–150

    Article  Google Scholar 

  • Dietzmann J, Thiel U, Ansorge S, Neumann KH, Täger M (2002) Thiol-inducing and immunoregulatory effects of flavonoids in peripheral blood mononuclear cells from patients with end-stage diabetic nephropathy. Free Radic Biol Med 33(10):1347–1354

    Article  PubMed  CAS  Google Scholar 

  • Ebrahimpour Koujan S, Gargari BP, Mobasseri M, Valizadeh H, Asghari-Jafarabadi M (2015) Effects of Silybum marianum (L.) Gaertn. (silymarin) extract supplementation on antioxidant status and hs-CRP in patients with type 2 diabetes mellitus: a randomized, triple-blind, placebo-controlled clinical trial. Phytomedicine 22(2):290–296

    Article  PubMed  CAS  Google Scholar 

  • El-Far YM, Zakaria MM, Gabr MM, El Gayar AM, El-Sherbiny IM, Eissa LA (2016) A newly developed silymarin nanoformulation as a potential antidiabetic agent in experimental diabetes. Nanomedicine 11(19):2581–2602

    Article  PubMed  CAS  Google Scholar 

  • Farhangkhoee H, Khan ZA, Kaur H, Xin X, Chen S, Chakrabarti S (2006) Vascular endothelial dysfunction in diabetic cardiomyopathy: pathogenesis and potential treatment targets. Pharmacol Ther 111(2):384–399

    Article  PubMed  CAS  Google Scholar 

  • Federico A, Andreone P, Brisc MC, Chiaramonte M, Floreani A, Freni MA, Grieco A, Lobello S, Milani S, Okolicsanyi L, Portincasa P, Smedile A, Sporea I, Vecchione R, Blanco CDV, Okolicsanyi L (2010) Effect of silybin in patients with chronic hepatitis: preliminary results of a multicentre randomized controlled trial vs placebo. Gastroenterology 138(5):800

    Article  Google Scholar 

  • Feldman EL, Nave KA, Jensen TS, Bennett DLH (2017) New horizons in diabetic neuropathy: mechanisms, bioenergetics, and pain. Neuron 93(6):1296–1313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fisher SJ, Kahn CR (2003) Insulin signaling is required for insulin’s direct and indirect action on hepatic glucose production. J Clinl Invest 111:463–468

    Article  CAS  Google Scholar 

  • Fu J, Cui Q, Yang B, Hou Y, Wang H, Xu Y, Wang D, Zhang Q, Pi J (2017) The impairment of glucose-stimulated insulin secretion in pancreatic beta-cells caused by prolonged glucotoxicity and lipotoxicity is associated with elevated adaptive antioxidant response. Food Chem Toxicol 100:161–167

    Article  PubMed  CAS  Google Scholar 

  • Guigas B, Naboulsi R, Villanueva GR, Taleux N, Lopeznovoa JM, Leverve XM, Elmir MY (2007) The flavonoid silibinin decreases glucose-6-phosphate hydrolysis in perifused rat hepatocytes by an inhibitory effect on glucose-6-phosphatase. Cell Physiol Biochem 20:925–934

    Article  PubMed  CAS  Google Scholar 

  • Guo X, Li H, Xu H, Woo S, Dong H, Lu F, Lange AJ, Wu C (2012) Glycolysis in the control of blood glucose homeostasis. Acta Pharm Sin B 2:358–367

    Article  CAS  Google Scholar 

  • Hackett ES, Twedt DC, Gustafson DL (2013) Milk thistle and its derivative compounds: a review of opportunities for treatment of liver disease. J Vet Intern Med 27:10

    Article  PubMed  CAS  Google Scholar 

  • Hu SC, Lan CE (2016) High-glucose environment disturbs the physiologic functions of keratinocytes: focusing on diabetic wound healing. J Dermatol Sci 84(2):121–127

    Article  PubMed  CAS  Google Scholar 

  • Hung HY, Qian K, Morris-Natschke SL, Hsu CS, Lee KH (2012) Recent discovery of plant-derived anti-diabetic natural products. Nat Prod Rep 29:580–606

    Article  PubMed  CAS  Google Scholar 

  • Imasawa T, Koike K, Ishii I, Chun J, Yatomi Y (2010) Blockade of sphingosine 1-phosphate receptor 2 signaling attenuates streptozotocin-induced apoptosis of pancreatic beta-cells. Biochem Biophys Res Commun 392:207–211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • International Diabetes Federation (2017) IDF Diabetes Atlas, 8th edn. IDF, Brussels

    Google Scholar 

  • Ishii E, Bracht A (1986) Glucose release by the liver under conditions of reduced activity of glucose 6-phosphatase. Braz J Med Biol Res 20:837–843

    Google Scholar 

  • Jain D, Somani R (2015) Silibinin, a bioactive flavanone, prevents the progression of early diabetic nephropathy in experimental type-2 diabetic rats. Int J Green Pharm 9(2):118

    Article  CAS  Google Scholar 

  • Jain D, Somani R, Gilhotra R (2016) Silibinin ameliorates hyperglycaemia, hyperlipidemia and prevent oxidative stress in streptozotocin induced diabetes in Sprague Dawley rats. Int J Pharm Res Allied Sci 5(3):136–144

    CAS  Google Scholar 

  • Ka SO, Kim KA, Kwon KB, Park JW, Park BH (2009) Silibinin attenuates adipogenesis in 3T3-L1 preadipocytes through a potential upregulation of the insig pathway. Int J Mol Med 23(5):633

    PubMed  CAS  Google Scholar 

  • Khalili N, Fereydoonzadeh R, Mohtashami R, Mehrzadi S, Heydari M, Huseini HF (2017) Silymarin, olibanum, and nettle, a mixed herbal formulation in the treatment of type II diabetes: a randomized, double-blind, Placebo-controlled, clinical trial. J Evid Based Complement Altern Med 22(4):603–608

    Article  CAS  Google Scholar 

  • Kheiripour N, Karimi J, Khodadadi I, Tavilani H, Goodarzi MT, Hashemnia M (2018) Silymarin prevents lipid accumulation in the liver of rats with type 2 diabetes via sirtuin1 and SREBP-1c. J Basic Clin Physiol Pharmacol. https://doi.org/10.1515/jbcpp-2017-0122

    Article  PubMed  Google Scholar 

  • Klip A, Sun Y, Chiu TT, Foley KP (2014) Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation. Am J Physiol-Cell Physiol 306:C879–C886

    Article  PubMed  CAS  Google Scholar 

  • Kwon MJ, Chung HS, Yoon CS, Lee EJ, Kim TK, Lee SH, Ko KS, Rhee BD, Kim MK, Park JH (2013) Low glibenclamide concentrations affect endoplasmic reticulum stress in INS-1 cells under glucotoxic or glucolipotoxic conditions. Korean J Intern Med 28:339–346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee Y, Park HR, Chun HJ, Lee J (2015) Silibinin prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease via mitochondrial stabilization. J Neurosci Res 93(5):755–765

    Article  PubMed  CAS  Google Scholar 

  • Lenzen S (2008) The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 51:216–226

    Article  PubMed  CAS  Google Scholar 

  • Li Volti G, Salomone S, Sorrenti V, Mangiameli A, Urso V, Siarkos I, Galvano F, Salamone F (2011) Effect of silibinin on endothelial dysfunction and ADMA levels in obese diabetic mice. Cardiovasc Diabetol 10(1):62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li HB, Yang YR, Mo ZJ, Ding Y, Jiang WJ (2015) Silibinin improves palmitate-induced insulin resistance in C2C12 myotubes by attenuating IRS-1/PI3 K/Akt pathway inhibition. Braz J Med Biol Res 48:440–446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liamis G, Filippatos TD, Liontos A, Elisaf MS (2016) Hyponatremia in patients with liver diseases: not just a cirrhosis-induced hemodynamic compromise. Hepatol Int 10(5):1–11

    Article  Google Scholar 

  • Lin CH, Li CH, Liao PL, Tse LS, Huang WK, Cheng HW, Cheng YW (2013) Silibinin inhibits VEGF secretion and age-related macular degeneration in a hypoxia-dependent manner through the PI-3 kinase/Akt/mTOR pathway. Br J Pharmacol 168(4):920–931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marrazzo G, Bosco P, La Delia F, Scapagnini G, Di Giacomo C, Malaguarnera M, Galvano F, Nicolosi A, Li Volti G (2011) Neuroprotective effect of silibinin in diabetic mice. Neurosci Lett 504(3):252–256

    Article  PubMed  CAS  Google Scholar 

  • Moynihan KA, Grimm AA, Plueger MM, Bernal-Mizrachi E, Ford E, Cras-Méneur C, Permutt MA, Imai SI (2005) Increased dosage of mammalian Sir2 in pancreatic β cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2:105–117

    Article  PubMed  CAS  Google Scholar 

  • Nentwich MM, Ulbig MW (2015) Diabetic retinopathy-ocular complications of diabetes mellitus. World J Diabetes 6(3):489–499

    Article  PubMed  PubMed Central  Google Scholar 

  • Nunes S, Rolo AP, Palmeira CM, Reis F (2017) Diabetic cardiomyopathy: focus on oxidative stress, mitochondrial dysfunction and inflammation. Cardiomyopathies. https://doi.org/10.5772/65915

    Article  Google Scholar 

  • Palomino OM, Gouveia NM, Ramos S, Martin MA, Goya L (2017) Protective effect of silybum marianum and silibinin on endothelial cells submitted to high glucose concentration. Planta Med 83:97–103

    PubMed  CAS  Google Scholar 

  • Park JM, Kim TH, Bae JS, Kim MY, Kim KS, Ahn YH (2010) Role of resveratrol in FOXO1-mediated gluconeogenic gene expression in the liver. Biochem Bioph Res Commun 403:329–334

    Article  CAS  Google Scholar 

  • Pilkington EH, Gurzov EN, Kakinen A, Litwak SA, Stanley WJ, Davis TP, Ke PC (2016) Pancreatic beta-cell membrane fluidity and toxicity induced by human islet amyloid polypeptide species. Sci Rep 6:21274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pirot P, Cardozo AK, Eizirik DL (2008) Mediators and mechanisms of pancreatic beta-cell death in type 1 diabetes. Arq Bras Endocrinol Metabol 52(2):156–165

    Article  PubMed  Google Scholar 

  • Rahimi R, Karimi J, Khodadadi I, Tayebinia H, Kheiripour N, Hashemnia M, Goli F (2018) Silymarin ameliorates expression of urotensin II (U-II) and its receptor (UTR) and attenuates toxic oxidative stress in the heart of rats with type 2 diabetes. Biomed Pharmacother 101:244–250

    Article  PubMed  CAS  Google Scholar 

  • Salamone F, Galvano F, Cappello F, Mangiameli A, Barbagallo I, Li Volti G (2012a) Silibinin modulates lipid homeostasis and inhibits nuclear factor kappa B activation in experimental nonalcoholic steatohepatitis. Transl Res 159(6):477–486

    Article  PubMed  CAS  Google Scholar 

  • Salamone F, Galvano F, Marino Gammazza A, Paternostro C, Tibullo D, Bucchieri F, Mangiameli A, Parola M, Bugianesi E, Li Volti G (2012b) Silibinin improves hepatic and myocardial injury in mice with nonalcoholic steatohepatitis. Dig Liver Dis 44(4):334–342

    Article  PubMed  CAS  Google Scholar 

  • Samanta R, Pattnaik AK, Pradhan KK, Mehta BK, Pattanayak SP, Banerjee S (2016) Wound healing activity of silibinin in mice. Pharmacogn Res 8(4):298–302

    Article  CAS  Google Scholar 

  • Serviddio G, Bellanti F, Giudetti AM, Gnoni GV, Petrella A, Tamborra R, Romano AD, Rollo T, Vendemiale G, Altomare E (2013) A silybin-phospholipid complex prevents mitochondrial dysfunction in a rodent model of nonalcoholic steatohepatitis. J Pharmacol Exp Ther 332(3):922–932

    Article  Google Scholar 

  • Sharma M, Anwer T, Pillai KK, Haque SE, Najmi AK, Sultana Y (2008) Silymarin, a flavonoid antioxidant, protects streptozotocin-induced lipid peroxidation and β-Cell damage in rat pancreas. Orient Pharm Exp Med 8:146–153

    Article  Google Scholar 

  • Smith AG, Muscat GEO (2005) Skeletal muscle and nuclear hormone receptors: Implications for cardiovascular and metabolic disease. Int J Biochem Cell B 37:2047–2063

    Article  CAS  Google Scholar 

  • Somesh BP, Verma MK, Sadasivuni MK, Mammenoommen A, Biswas S, Shilpa PC, Reddy AK, Yateesh AN, Pallavi PM, Nethra S, Smitha R, Neelima K, Narayanan U (2013) Jagannath MR (2013) Chronic glucolipotoxic conditions in pancreatic islets impair insulin secretion due to dysregulated calcium dynamics, glucose responsiveness and mitochondrial activity. BMC Cell Biol 14:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stolf AM, Cardoso CC, Acco A (2017) Effects of silymarin on diabetes mellitus complications: a review. Phytother Res 31:366–374

    Article  PubMed  Google Scholar 

  • Suh HJ, Cho SY, Kim EY, Choi HS (2015) Blockade of lipid accumulation by silibinin in adipocytes and zebrafish. Chem-Biol Interact 227:53–62

    Article  PubMed  CAS  Google Scholar 

  • Tabandeh MR, Oryan A, Mohhammad-Alipour A, Tabatabaei-Naieni A (2013) Silibinin regulates matrix metalloproteinase 3 (stromelysine1) gene expression, hexoseamines and collagen production during rat skin wound healing. Phytother Res 27(8):1149–1153

    Article  PubMed  CAS  Google Scholar 

  • Tahrani AA, Barnett AH, Bailey CJ (2016) Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus. Nat Rev Endocrinol 12:566–592

    Article  PubMed  CAS  Google Scholar 

  • Tuorkey MJ, El-Desouki NI, Kamel RA (2015) Cytoprotective effect of silymarin against diabetes-induced cardiomyocyte apoptosis in diabetic rats. Biomed Environ Sci 28(1):36–43

    PubMed  Google Scholar 

  • Voroneanu L, Nistor I, Dumea R, Apetrii M, Covic A (2016) Silymarin in type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. J Diabetes Res. https://doi.org/10.1155/2016/5147468

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Liu M, Liu WW, Hao WB, Tashiro S, Onodera S, Ikejima T (2012) In vivo recovery effect of silibinin treatment on streptozotocin-induced diabetic mice is associated with the modulations of Sirt-1 expression and autophagy in pancreatic beta-cell. J Asian Nat Prod Res 14:413–423

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Li YJ, Ding Y, Zhang HN, Sun T, Zhang K, Yang L, Guo YY, Liu SB, Zhao MG, Wu YM (2016) Silibinin prevents autophagic cell death upon oxidative stress in cortical neurons and cerebral ischemia-reperfusion injury. Mol Neurobiol 53(2):932–943

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Cai L, Wang Y, Wang Q, Lu D, Chen H, Ying X (2017) The protective effects of silibinin in the treatment of streptozotocin-induced diabetic osteoporosis in rats. Biomed Pharmacother 89:681–688

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Sun Y, Xu F, Liu W, Hayashi T, Onodera S, Tashiro S-I, Ikejima T (2018) Involvement of estrogen receptors in silibinin protection of pancreatic beta-cells from TNFalpha- or IL-1beta-induced cytotoxicity. Biomed Pharmacother 102:344–353

    Article  PubMed  CAS  Google Scholar 

  • Yao J, Zhi M, Gao X, Hu P, Li C, Yang X (2013) Effect and the probable mechanisms of silibinin in regulating insulin resistance in the liver of rats with non-alcoholic fatty liver. Braz J Med Biol 46:1–8

    Article  Google Scholar 

  • Ying X, Sun L, Chen X, Xu H, Guo X, Chen H, Hong J, Cheng S, Peng L (2013) Silibinin promotes osteoblast differentiation of human bone marrow stromal cells via bone morphogenetic protein signaling. Eur J Pharmacol 721(1–3):225–230

    Article  PubMed  CAS  Google Scholar 

  • Ying X, Chen X, Liu H, Nie P, Shui X, Shen Y, Yu K, Cheng S (2015) Silibinin alleviates high glucose-suppressed osteogenic differentiation of human bone marrow stromal cells via antioxidant effect and PI3 K/Akt signaling. Eur J Pharmacol 765:394–401

    Article  PubMed  CAS  Google Scholar 

  • Young LM, Saunders JC, Mahood RA, Revill CH, Foster RJ, Tu LH, Raleigh DP, Radford SE, Ashcroft AE (2015) Screening and classifying small-molecule inhibitors of amyloid formation using ion mobility spectrometry-mass spectrometry. Nat Chem 7:73–81

    Article  PubMed  CAS  Google Scholar 

  • Zhan T, Digel M, Küch E-M, Stremmel W, Füllekrug J (2011) Silybin and dehydrosilybin decrease glucose uptake by inhibiting GLUT proteins. J Cell Biochem 112:849–859

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Hai J, Cao M, Zhang Y, Pei S, Wang J, Zhang Q (2013) Silibinin ameliorates steatosis and insulin resistance during non-alcoholic fatty liver disease development partly through targeting IRS-1/PI3 K/Akt pathway. Int Immunopharmacol 17:714–720

    Article  PubMed  CAS  Google Scholar 

  • Zhang HT, Shi K, Baskota A, Zhou FL, Chen YX, Tian HM (2014a) Silybin reduces obliterated retinal capillaries in experimental diabetic retinopathy in rats. Eur J Pharmacol 740:233–239

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Liu H, Chuang CL, Li X, Au M, Zhang L, Phillips ARJ, Scott DW, Cooper GJ (2014b) The pathogenic mechanism of diabetes varies with the degree of overexpression and oligomerization of human amylin in the pancreatic islet beta cells. Faseb J 28:5083–5096

    Article  PubMed  CAS  Google Scholar 

  • Ziegler D, Fonseca V (2015) From guideline to patient: a review of recent recommendations for pharmacotherapy of painful diabetic neuropathy. J Diabetes Complications 29(1):146–156

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by China Postdoctoral Science Foundation (2017M621161; 2018T110462), Doctoral Starting up Foundation of Liaoning Science and Technology Department (201601139), Foundation of Liaoning Education Committee (201610163L26), National Natural Science Foundation of China (81573580; 81503229), Key Laboratory of Polysaccharide Bioactivity Evaluation of TCM of Liaoning Province and Key Laboratory of Quality Control of TCM of Liaoning Province (17-137-1-00).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongkai Wang or Fanxing Xu.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, C., Li, D., Zhang, S. et al. Role of silibinin in the management of diabetes mellitus and its complications. Arch. Pharm. Res. 41, 785–796 (2018). https://doi.org/10.1007/s12272-018-1047-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-018-1047-x

Keywords

Navigation