Skip to main content
Log in

Anti-osteoclastogenic diacetylenic components of Dendropanax morbifera

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Methanol (MeOH) extract of the aerial parts of Dendropanax morbifera (Araliaceae) has demonstrated a significant dose-dependent inhibitory effect on the RANKL-induced differentiation of bone marrow-derived macrophages to osteoclasts. Bioassay-guided fractionation of the extract resulted in the isolation of a novel diacetylene carboxylic acid (1), together with a known diacetylenic compounds (2) as phytochemicals to strongly inhibit the osteoclast differentiation. The chemical structure of 1 was determined by spectroscopic analyses as (9Z,16S)-16-O-acetyl-9,17-octadecadiene-12,14-diynoic acid, that is acetyl derivative of 2. Two diacetylenic components of D. morbifera, 1 and 2 exhibited a dose-dependent inhibitory effect on the RANKL-induced formation of tartrate-resistant acid phosphatase-positive multinucleated cells with IC50 values of 2.4 and 3.1 μM, respectively. Seven other known components (39) were also isolated from the extract: dendropanoxide (3), friedelin (4), epifriedelanol (5), α-amyrin (6), β-amyrin (7), β-sitosterol (8), and stigmasterol (9). The significant anti-osteoclastogenic activities of 3, 4, 5, and 7 were first reported in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Antonisamy P, Duraipandiyan V, Ignacimuthu S (2011) Anti-inflammatory, analgesic and antipyretic effects of friedelin isolated from Azima tetracantha Lam. in mouse and rat models. J Pharm Pharmacol 63:1070–1077

    Article  PubMed  CAS  Google Scholar 

  • Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342

    Article  PubMed  CAS  Google Scholar 

  • Chien SC, Tseng YH, Hsu WN, Chu FH, Chang ST, Kuo YH, Wang SY (2014) Anti-inflammatory and anti-oxidative activities of polyacetylene from Dendropanax dentiger. Nat Prod Commun 11:1589–1590

    Google Scholar 

  • Christensen LP, Brandt K (2006) Bioactive polyacetylenes in food plants of the Apiaceae family: occurrence, bioactivity and analysis. J Pharm Biomed Anal 41:683–693

    Article  PubMed  CAS  Google Scholar 

  • Chung IM, Kim MY, Park SD, Park WH, Moon HI (2009) In vitro evaluation of the antiplasmodial activity of Dendropanax morbifera against chloroquine-sensitive strains of Plasmodium falciparum. Phytother Res 23:1634–1637

    Article  PubMed  CAS  Google Scholar 

  • Chung IM, Song HK, Kim SJ, Moon HI (2011) Anticomplement activity of polyacetylenes from leaves of Dendropanax morbifera Leveille. Phytother Res 5:784–786

    Article  CAS  Google Scholar 

  • Dawid C, Dunemann F, Schwab W, Nothnagel T, Hofmann T (2015) Bioactive C17-polyacetylenes in carrots (Daucus carota L.): current knowledge and future perspectives. J Agric Food Chem 63:9211–9222

    Article  PubMed  CAS  Google Scholar 

  • Del Fattore A, Teti A, Rucci N (2008) Osteoclast receptors and signaling. Arch Biochem Biophys 473:147–160

    Article  PubMed  CAS  Google Scholar 

  • Han SH, Jung YH, Oh MH, Ko MH, Oh YS, Koh SC, Kim MH, Oh MY (1998) Phytogenetic relationships of the Dendropanax morbifera and D. trifidus based on PCR-RAPD. Korean J Genet 20:173–181

    CAS  Google Scholar 

  • Holanda Pinto SA, Pinto LM, Cunha GM, Chaves MH, Santos FA, Rao VS (2008) Anti-inflammatory effect of α, β-Amyrin, a pentacyclic triterpene from Protium heptaphyllum in rat model of acute periodontitis. Inflammopharmacology 16:48–52

    Article  PubMed  CAS  Google Scholar 

  • Hyun TK, Kim MO, Lee H, Kim Y, Kim E, Kim JS (2013) Evaluation of anti-oxidant and anti-cancer properties of Dendropanax morbifera Léveille. Food Chem 141:1947–1955

    Article  PubMed  CAS  Google Scholar 

  • Kim W, Kim DW, Yoo DY, Jung HY, Kim JW, Kim DW, Choi JH, Moon SM, Yoon YS, Hwang IK (2015) Antioxidant effects of Dendropanax morbifera Léveille extract in the hippocampus of mercury-exposed rats. BMC Complement Altern Med 15:247–253

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee JW, Kim KS, An HK, Kim CH, Moon HI, Lee YC (2013) Dendropanoxide induces autophagy through ERK1/2 activation in MG-63 human osteosarcoma cells and autophagy inhibition enhances dendropanoxide-induced apoptosis. PLoS ONE 8:e83611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liliana HV, Javier P, Arturo NO (2012) The pentacyclic triterpenes α, β-amyrins: a review of sources and biological activities. In: Rao J (ed) Phytochemicals—a global perspective of their role in nutrition and health. InTech Europe, Rijeka, pp 487–502

    Google Scholar 

  • Moon HI (2011) Antidiabetic effects of dendropanoxide from leaves of Dendropanax morbifera Leveille in normal and streptozotocin-induced diabetic rats. Hum Exp Toxicol 30:870–875

    Article  PubMed  CAS  Google Scholar 

  • Motoo T, Reiko M, Masakazu S, Yoshinori A (2005) 13C NMR assignment of dammarane triterpenes and dendropanoxide: application of 2D long-range 13C-1H correlation spectra. Magn Reson Chem 26:581–590

    Google Scholar 

  • Park BY, Min BS, Oh SR, Kim JH, Kim TJ, Kim DH, Bae KH, Lee HK (2004) Isolation and anticomplement activity of compounds from Dendropanax morbifera. J Ethnopharmacol 90:403–408

    Article  PubMed  CAS  Google Scholar 

  • Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ (1999) Modulation of osteoclast differenotiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 3:345–357

    Article  Google Scholar 

  • Sunil C, Duraipandiyan V, Ignacimuthu S, Al-Dhabi NA (2013) Antioxidant, free radical scavenging and liver protective effects of friedelin isolated from Azima tetracantha Lam. leaves. Food Chem 139:860–865

    Article  PubMed  CAS  Google Scholar 

  • Trinh TT, Nguyen HC, Tran VS (2007) Triterpenes from Celastrus hindsii Benth. J Chem 45:373–376

    CAS  Google Scholar 

  • Virgilio D, Ebajo J, Chien-Chang S, Consolacion YR (2015) Terpenoids and Sterols from Hoya multiflora Blume. J App Pharm Sci 5:33–39

    Google Scholar 

  • Zhang W, Yang DL, Wang YX, Wang HW, Zhen ZJ, Zhang YZ, Shen Y (2013) In vitro osteoclast-suppressing effect of sodium ibandronate. Chin Med J (Engl) 126:751–755

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Business for Cooperative R&D between Industry, Academy, and Research Institute funded Korea Small and Medium Business Administration in 2015 (C0277170) and by the Ministry of Science, ICT, and Future Planning of Korea (SI-1606).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seong Hwan Kim or Ji Young Lee.

Ethics declarations

Conflict of interest

The authors have declared no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, E.H., Jo, C.S., Ryu, S.Y. et al. Anti-osteoclastogenic diacetylenic components of Dendropanax morbifera. Arch. Pharm. Res. 41, 506–512 (2018). https://doi.org/10.1007/s12272-018-1033-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-018-1033-3

Keywords

Navigation