Skip to main content
Log in

The protective mechanism of QGC in feline esophageal epithelial cells by interleukin-1β treatment

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

In a previous study, Quercetin-3-O-β-d-glucuronopyranoside (QGC) has anti-oxidative and anti-inflammatory effects in vivo. QGC is a flavonoid glucoside extracted from Rumex Aquaticus. We investigated the downstream target proteins involved in IL-1β-stimulated ROS production and the ability of QGC to inhibit ROS production. Cell viability was determined using the MTT reduction assay. Western blot analysis was performed with antibodies to investigate the activation of three MAPKs, NF-κB, and phosphorylated IκB-α (pIB), and the expression of COX-2. 2′,7′-dichlorofluorescin diacetate was used to detect the generation of intracellular ROS species. When the cells were exposed to media containing IL-1β for 18 h, cell viability was not affected. QGC did not reduce the COX-2 expression induced by IL-1β. However; QGC attenuated the production of intracellular ROS induced by IL-1β. IL-1β increased the expression of ERK, p38 MAPK, and pIB, and nuclear translocation of NF-κB were recovered by the ROS scavenger N-acetyl-l-cysteine (NAC) and QGC, but not by the NADPH oxidase inhibitor diphenylene iodonium. Pretreatment of cells with the ERK inhibitor PD98059, the p38 MAPK inhibitor SB202190, NAC, and QGC attenuated nuclear translocation of NF-κB and activation of pIB. QGC has a scavenging effect on cytokine-induced ROS production, thereby preventing its downstream effects, nuclear translocation of NF-κB, and activation of pIB is mediated by activation of ERK and p38 MAPK, although QGC does not inhibit IL-1β-stimulated COX-2 expression in feline esophageal epithelial cells. The data suggest that QGC exerts anti-oxidative effects and inhibitory effects against esophageal epithelial cells signals by the action of IL-1β treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Afonso V, Champy R, Mitrovic D, Collin P, Lomri A (2007) Reactive oxygen species and superoxide dismutases: role in joint diseases. Joint Bone Spine 74:324–329

    Article  CAS  PubMed  Google Scholar 

  • Al-Ashy R, Chakroun I, El-Sabban ME, Homaidan FR (2006) The role of NF-κB in mediating the anti-inflammatory effects of IL-10 in intestinal epithelial cells. Cytokine 36:1–8

    Article  CAS  PubMed  Google Scholar 

  • Arend WP (1993) Interleukin-1 receptor antagonist. Adv Immunol 54:167–227

    Article  CAS  PubMed  Google Scholar 

  • Aviram M (2000) Review of human studies on oxidative damage and antioxidant protection related to cardiovascular diseases. Free Radic Res 33(Suppl):S85–S97

    CAS  PubMed  Google Scholar 

  • Baggiolini M, Loetscher P, Moser B (1995) Interleukin-8 and the chemokine family. Int J Immunopharmacol 17:103–108

    Article  CAS  PubMed  Google Scholar 

  • Barnes PJ (1994) Cytokines as mediators of chronic asthma. Am J Respir Crit Care Med 150:S42–S49

    Article  CAS  PubMed  Google Scholar 

  • Callister ME, Pinhu L, Catley MC, Westwell AD, Newton R, Leaver SK, Quinlan GJ, Evans TW, Griffiths MJ, Burke-Gaffney A (2008) PMX464, a thiol-reactive quinol and putative thioredoxin inhibitor, inhibits NF-κB-dependent proinflammatory activation of alveolar epithelial cells. Br J Pharmacol 155:661–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen KC, Zhou Y, Zhang W, Lou MF (2007a) Control of PDGF-induced reactive oxygen species (ROS) generation and signal transduction in human lens epithelial cells. Mol Vis 13:374–387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen KH, Weng MS, Lin JK (2007b) Tangeretin suppresses IL-1β-induced cyclooxygenase (COX)-2 expression through inhibition of p38 MAPK, JNK, and AKT activation in human lung carcinoma cells. Biochem Pharmacol 73:215–227

    Article  CAS  PubMed  Google Scholar 

  • Cho JW, Park K, Kweon GR, Jang BC, Baek WK, Suh MH, Kim CW, Lee KS, Suh SI (2005) Curcumin inhibits the expression of COX-2 in UVB-irradiated human keratinocytes (HaCaT) by inhibiting activation of AP-1: p38 MAP kinase and JNK as potential upstream targets. Exp Mol Med 37:186–192

    Article  CAS  PubMed  Google Scholar 

  • Chow JM, Shen SC, Huan SK, Lin HY, Chen YC (2005) Quercetin, but not rutin and quercitrin, prevention of H2O2-induced apoptosis via anti-oxidant activity and heme oxygenase 1 gene expression in macrophages. Biochem Pharmacol 69:1839–1851

    Article  CAS  PubMed  Google Scholar 

  • Csaki C, Keshishzadeh N, Fischer K, Shakibaei M (2008) Regulation of inflammation signalling by resveratrol in human chondrocytes in vitro. Biochem Pharmacol 75:677–687

    Article  CAS  PubMed  Google Scholar 

  • de Magalhaes JP, Church GM (2006) Cells discover fire: employing reactive oxygen species in development and consequences for aging. Exp Gerontol 41:1–10

    Article  PubMed  Google Scholar 

  • Demir S, Yilmaz M, Koseoglu M, Akalin N, Aslan D, Aydin A (2003) Role of free radicals in peptic ulcer and gastritis. Turk J Gastroenterol 14:39–43

    PubMed  Google Scholar 

  • Dhalla NS, Temsah RM, Netticadan T (2000) Role of oxidative stress in cardiovascular diseases. J Hypertens 18:655–673

    Article  CAS  PubMed  Google Scholar 

  • Dinarello CA (1991) Interleukin-1 and interleukin-1 antagonism. Blood 77:1627–1652

    CAS  PubMed  Google Scholar 

  • Dinarello CA (1996) Biologic basis for interleukin-1 in disease. Blood 87:2095–2147

    CAS  PubMed  Google Scholar 

  • Garrington TP, Johnson GL (1999) Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol 11:211–218

    Article  CAS  PubMed  Google Scholar 

  • Gutteridge JM (1994) Biological origin of free radicals, and mechanisms of antioxidant protection. Chem Biol Interact 91:133–140

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (1994) Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344:721–724

    Article  CAS  PubMed  Google Scholar 

  • Hang CH, Shi JX, Li JS, Li WQ, Yin HX (2005) Up-regulation of intestinal nuclear factor kappa B and intercellular adhesion molecule-1 following traumatic brain injury in rats. World J Gastroenterol 11:1149–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herlaar E, Brown Z (1999) p38 MAPK signalling cascades in inflammatory disease. Mol Med Today 5:439–447

    Article  CAS  PubMed  Google Scholar 

  • Isomoto H, Miyazaki M, Mizuta Y, Takeshima F, Murase K, Inoue K, Yamasaki K, Murata I, Koji T, Kohno S (2000) Expression of nuclear factor-κB in Helicobacter pylori-infected gastric mucosa detected with southwestern histochemistry. Scand J Gastroenterol 35:247–254

    Article  CAS  PubMed  Google Scholar 

  • Kaminska B (2005) MAPK signalling pathways as molecular targets for anti-inflammatory therapy—from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta 1754:253–262

    Article  CAS  PubMed  Google Scholar 

  • Kandaswami C, Middleton E Jr (1994) Free radical scavenging and antioxidant activity of plant flavonoids. Adv Exp Med Biol 366:351–376

    Article  CAS  PubMed  Google Scholar 

  • Kim HP, Son KH, Chang HW, Kang SS (2004) Anti-inflammatory plant flavonoids and cellular action mechanisms. J Pharmacol Sci 96:229–245

    Article  CAS  PubMed  Google Scholar 

  • Kwon TH, Jung H, Cho EJ, Jeong JH, Sohn UD (2015) The signaling mechanism of contraction induced by ATP and UTP in feline esophageal smooth muscle cells. Mol Cells 38:616–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyriakis JM, Avruch J (1996) Protein kinase cascades activated by stress and inflammatory cytokines. BioEssays 18:567–577

    Article  CAS  PubMed  Google Scholar 

  • Menon SG, Goswami PC (2007) A redox cycle within the cell cycle: ring in the old with the new. Oncogene 26:1101–1109

    Article  CAS  PubMed  Google Scholar 

  • Middleton E Jr (1998) Effect of plant flavonoids on immune and inflammatory cell function. Adv Exp Med Biol 439:175–182

    Article  CAS  PubMed  Google Scholar 

  • Min YS, Lee SE, Hong ST, Kim HS, Choi BC, Sim SS, Whang WK, Sohn UD (2009) The inhibitory effect of quercetin-3-O-β-d-glucuronopyranoside on gastritis and reflux esophagitis in rats. Korean J Physiol Pharmacol 13:295–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreira AJ, Fraga C, Alonso M, Collado PS, Zetller C, Marroni C, Marroni N, Gonzalez-Gallego J (2004) Quercetin prevents oxidative stress and NF-κB activation in gastric mucosa of portal hypertensive rats. Biochem Pharmacol 68:1939–1946

    Article  CAS  PubMed  Google Scholar 

  • Mukaida N, Harada A, Matsushima K (1998) Interleukin-8 (IL-8) and monocyte chemotactic and activating factor (MCAF/MCP-1), chemokines essentially involved in inflammatory and immune reactions. Cytokine Growth Factor Rev 9:9–23

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi M, Rosenberg DW (2013) Multifaceted roles of PGE2 in inflammation and cancer. Semin Immunopathol 35:123–137

    Article  CAS  PubMed  Google Scholar 

  • Nam Y, Lee JM, Wang Y, Ha HS, Sohn UD (2016) The effect of Flos Lonicerae Japonicae extract on gastro-intestinal motility function. J Ethnopharmacol 179:280–290

    Article  PubMed  Google Scholar 

  • Nieminen R, Leinonen S, Lahti A, Vuolteenaho K, Jalonen U, Kankaanranta H, Goldring MB, Moilanen E (2005) Inhibitors of mitogen-activated protein kinases downregulate COX-2 expression in human chondrocytes. Mediators Inflamm 2005:249–255

    Article  PubMed  PubMed Central  Google Scholar 

  • Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA (2001) Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 74:418–425

    CAS  PubMed  Google Scholar 

  • Odeleye OE, Eskelson CD, Mufti SI, Watson RR (1992) Vitamin E inhibition of lipid peroxidation and ethanol-mediated promotion of esophageal tumorigenesis. Nutr Cancer 17:223–234

    Article  CAS  PubMed  Google Scholar 

  • Olyaee M, Sontag S, Salman W, Schnell T, Mobarhan S, Eiznhamer D, Keshavarzian A (1995) Mucosal reactive oxygen species production in oesophagitis and Barrett’s oesophagus. Gut 37:168–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oppenheim JJ, Matsushima K, Yoshimura T, Leonard EJ, Neta R (1989) Relationship between interleukin 1 (IL1), tumor necrosis factor (TNF) and a neutrophil attracting peptide (NAP-1). Agents Actions 26:134–140

    Article  CAS  PubMed  Google Scholar 

  • Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042

    Article  CAS  PubMed  Google Scholar 

  • Rosch S, Ramer R, Brune K, Hinz B (2005) Prostaglandin E2 induces cyclooxygenase-2 expression in human non-pigmented ciliary epithelial cells through activation of p38 and p42/44 mitogen-activated protein kinases. Biochem Biophys Res Commun 338:1171–1178

    Article  PubMed  Google Scholar 

  • Sayre LM, Smith MA, Perry G (2001) Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr Med Chem 8:721–738

    Article  CAS  PubMed  Google Scholar 

  • Shi C, Andersson R, Zhao X, Wang X (2005) Potential role of reactive oxygen species in pancreatitis-associated multiple organ dysfunction. Pancreatology 5:492–500

    Article  CAS  PubMed  Google Scholar 

  • Stein HJ, Esplugues J, Whittle BJ, Bauerfeind P, Hinder RA, Blum AL (1989) Direct cytotoxic effect of oxygen radicals on the gastric mucosa. Surgery 106:318–323 (discussion 323–314)

    CAS  PubMed  Google Scholar 

  • Stein HJ, Hinder RA, Oosthuizen MM (1990) Gastric mucosal injury caused by hemorrhagic shock and reperfusion: protective role of the antioxidant glutathione. Surgery 108:467–473 (discussion 473–464)

    CAS  PubMed  Google Scholar 

  • Sugino N (2007) The role of oxygen radical-mediated signaling pathways in endometrial function. Placenta 28(Suppl A):S133–S136

    Article  PubMed  Google Scholar 

  • Taub DD, Oppenheim JJ (1994) Chemokines, inflammation and the immune system. Ther Immunol 1:229–246

    CAS  PubMed  Google Scholar 

  • Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J (2004) Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 266:37–56

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Tu YC, Lian TW, Hung JT, Yen JH, Wu MJ (2006) Distinctive antioxidant and antiinflammatory effects of flavonols. J Agric Food Chem 54:9798–9804

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Yoshida N, Tomatsuri N, Takayama R, Katada K, Takagi T, Ichikawa H, Naito Y, Okanoue T, Yoshikawa T (2005) Cytokine-induced neutrophil accumulation in the pathogenesis of acute reflux esophagitis in rats. Int J Mol Med 16:71–77

    CAS  PubMed  Google Scholar 

  • Yang CM, Chien CS, Hsiao LD, Luo SF, Wang CC (2002) Interleukin-1beta-induced cyclooxygenase-2 expression is mediated through activation of p42/44 and p38 MAPKS, and NF-kappaB pathways in canine tracheal smooth muscle cells. Cell Signal 14:899–911

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Elner SG, Bian ZM, Till GO, Petty HR, Elner VM (2007) Pro-inflammatory cytokines increase reactive oxygen species through mitochondria and NADPH oxidase in cultured RPE cells. Exp Eye Res 85:462–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaw TS, Khin PP, Sohn UD (2016) The signaling of amitriptyline-induced inhibitory effect on electrical field stimulation response in colon smooth muscle. Naunyn Schmiedebergs Arch Pharmacol 389:961–970

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Stanley RA, Adaim A, Melton LD, Skinner MA (2006) Free radical scavenging and cytoprotective activities of phenolic antioxidants. Mol Nutr Food Res 50:996–1005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (Grant 2016R1D1A1A09918019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sun Young Park or Uy Dong Sohn.

Additional information

Hyun Soo Jang, Seung In Um are equally contributed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, H.S., Um, S.I., Lee, S.H. et al. The protective mechanism of QGC in feline esophageal epithelial cells by interleukin-1β treatment. Arch. Pharm. Res. 40, 204–213 (2017). https://doi.org/10.1007/s12272-016-0858-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-016-0858-x

Keywords

Navigation