Skip to main content
Log in

Identification of new pyrrole alkaloids from the fruits of Lycium chinense

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Three new minor pyrrole alkaloids, 3-[2-formyl-5-(hydroxymethyl)-1H-pyrrol-1-yl]pentanedioic acid (1), (2R)-[2-formyl-5-(hydroxymethyl)-1H-pyrrol-1-yl]-1-methoxy-1-oxobutanoic acid (2), and methyl (2R)-[2-formyl-5-(methoxymethyl)-1H-pyrrol-1-yl]-4-methylpentanoate (3) were isolated from the fruits of Lycium chinense Miller (Solanaceae), along with the known compound, methyl (2R)-[2-formyl-5-(methoxymethyl)-1H-pyrrol-1-yl]-3-(phenyl)propanoate (4). The structures of 14 were elucidated by analysis of their 1D- and 2D-NMR and HRMS data. The absolute configurations of 24, possessing a stereogenic center in each structure, were determined by comparison of their experimental electronic circular dichroism (ECD) with those of calculated ECD values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amos RIJ, Gourlay BS, Molesworth PP, Smith JA, Sprod OR (2005) Annulation of pyrrole: application to the synthesis of indolizidine alkaloids. Tetrahedron 61:8226–8230

    Article  CAS  Google Scholar 

  • Barone V, Cossi MJ (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  • Bruhn T, Hemberger Y, Schaumlöffel A, Bringmann G (2010) SpecDis version 1.50. University of Wűerzburg, Wűerzburg

  • Chan TH, Lee SD (1983) 1,4-Dichloro-1,4-dimethoxybutane as a mild reagent for the conversion of primary amines to pyrroles. Synthesis of a pyrrole compound from tobacco. J Org Chem 48:3059–3061

    Article  CAS  Google Scholar 

  • Charles WJ, Qian T, Alexander ZJ (1991) Short, enantiogenic syntheses of (−)-indolizidine 167B and (+)-monomorine. J Am Chem Soc 113:3513–3518

    Article  Google Scholar 

  • Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681

    Article  CAS  PubMed  Google Scholar 

  • Dieter RK, Yu H (2000) A facile synthesis of polysubstituted pyrroles. Org Lett 2:2283–2286

    Article  CAS  PubMed  Google Scholar 

  • Duke JA, Bogenschutz-Godwin MJ, duCellier J, Duke PAK (2002) Handbook of medicinal herbs. CRC Press, New York

    Book  Google Scholar 

  • Franc C, Denone F, Cuisiner C, Ghosez L (1999) A general synthesis of 2-formyl-3-arylpyrroles. Tetrahedron Lett 40:4555–4558

    Article  CAS  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE Jr., Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Revision D.01. Gaussian, Inc, Wallingford

  • Gaullier JM, Bazin M, Valla A, Giraud M, Santus RJ (1995) Amino acid-pyrrole N-conjugates; a new class of antioxidants II. Effectiveness of singlet oxygen quenching by luminescence measurements. J Photochem Photobiol B 30:195–200

    Article  CAS  Google Scholar 

  • Jefford CW, Sienkiewicz K, Thornton SR (1995) Short, enantiospecific syntheses of indolizidines 209B and 209D, and piclavine A from diethyl-L-glutamate. Helv Chim Acta 78:1511–1524

    Article  CAS  Google Scholar 

  • Josey AD, Jenner EL (1962) N-Functionally substituted pyrroles. J Org Chem 27:2466–2470

    Article  CAS  Google Scholar 

  • Kang YK (2001) Ab initio MO and density functional studies on trans and cis conformers of N-methylacetamide. J Mol Struct (Thoechem) 546:183–193

    Article  CAS  Google Scholar 

  • Kim SY, Choi YH, Huh H, Kim J, Kim YC, Lee HS (1997a) New antihepatotoxic cerebroside from Lycium chinense fruits. J Nat Prod 60:274–276

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Kim HP, Huh H, Kim YC (1997b) Antihepatotoxic zeaxanthins from the fruits of Lycium chinense. Arch Pharmacal Res 20:529–532

    Article  CAS  Google Scholar 

  • Lin CC, Chuang SC, Lin JM, Yang JJ (1997) Evaluation of the antiinflammatory hepatoprotective and antioxidant activities of Lycium chinense from Taiwan. Phytomedicine 4:213–220

    Article  CAS  PubMed  Google Scholar 

  • Liu JH, Yang QC, Mak TCW, Wong HNC (2000) Highly regioselective synthesis of 2,3,4-trisubstituted 1H-pyrroles: a formal total synthesis of lukianol A. J Org Chem 65:3587–3595

    Article  CAS  PubMed  Google Scholar 

  • Liu WY, Zhang WD, Chen H, Gu ZB, Li TZ, Zhou YJ (2003) Pyrrole alkaloids from Bolbostemma paniculatum. J Asian Nat Prod Res 5:159–163

    Article  CAS  PubMed  Google Scholar 

  • Park MJ, Kim SR, Huh H, Jung JH, Kim YC (1994) Betaine attenuates glutamate-induced neurotoxicity in primary cultured brain cells. Arch Pharmacal Res 17:343–347

    Article  CAS  Google Scholar 

  • Ragno R, Marshall GR, Di Santo R, Costi R, Massa S, Rompei R, Artico M (2000) Antimycobacterial pyrroles: synthesis, anti-Mycobacterium tuberculosis activity and QSAR studies. Bioorg Med Chem 8:1423–1432

    Article  CAS  PubMed  Google Scholar 

  • Tressl R, Nittka C, Kersten E, Rewicki DJ (1995) Formation of isoleucine-specific Maillard products from [1-13C]-d-glucose and [1-13C]-D-fructose. J Agric Food Chem 43:1163–1169

    Article  CAS  Google Scholar 

  • Youn UJ, Kil YS, Nam JW, Lee YJ, Kim J, Lee D, Lee JH, Seo EK (2013) New pyrrole alkaloids with bulky N-alkyl side chains containing stereogenic centers from Lycium chinense. Helv Chim Acta 96:1482–1487

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper (Youn UJ) was supported by [RP-Grant 2010 of Ewha Womans University].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-Kyoung Seo.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youn, U.J., Lee, J.Y., Kil, YS. et al. Identification of new pyrrole alkaloids from the fruits of Lycium chinense . Arch. Pharm. Res. 39, 321–327 (2016). https://doi.org/10.1007/s12272-015-0695-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-015-0695-3

Keywords

Navigation