Skip to main content
Log in

Developing Streptomyces venezuelae as a cell factory for the production of small molecules used in drug discovery

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The heterologous expression of biosynthetic pathways is an indispensable tool for drug discovery and development from natural products. Streptomyces venezuelae is a promising heterologous host as it offers several attractive advantages, such as rapid growth rate, convenient genetic manipulation, and an abundant supply of common biosynthetic building blocks. In recent decades, several S. venezuelae mutant strains have been constructed and used to facilitate the synthesis and derivatization of diverse natural products. In this review article, we have provided a schematic look at these host strains, which were used to synthesize natural products from genetically engineered biosynthetic gene clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arcamone, F., and G. Cassinelli. 1998. Biosynthetic anthracyclines. Current Medicinal Chemistry 5: 391–419.

    CAS  PubMed  Google Scholar 

  • Arcamone, F., F. Animati, G. Capranico, P. Lombardi, G. Pratesi, S. Manzini, R. Supino, and F. Zunino. 1997. New developments in antitumor anthracyclines. Pharmacology and Therapeutics 76: 18–124.

    Article  Google Scholar 

  • Barbe, V., M. Bouzon, S. Mangenot, B. Badet, J. Poulain, B. Segurens, D. Vallenet, P. Marlière, and J. Weissenbach. 2011. Complete genome sequence of Streptomyces cattleya NRRL 8057, a producer of antibiotics and fluorometabolites. Journal of Bacteriology 193: 5055–5056.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bentley, S.D., K.F. Chater, A.M. Cerdeño-Tárraga, G.L. Challis, N.R. Thomson, K.D. James, D.E. Harris, M.A. Quail, H. Kieser, D. Harper, A. Bateman, S. Brown, G. Chandra, C.W. Chen, M. Collins, A. Cronin, A. Fraser, A. Goble, J. Hidalgo, T. Hornsby, S. Howarth, C.H. Huang, T. Kieser, L. Larke, L. Murphy, K. Oliver, S. O’Neil, E. Rabbinowitsch, M.A. Rajandream, K. Rutherford, S. Rutter, K. Seeger, D. Saunders, S. Sharp, R. Squares, S. Squares, K. Taylor, T. Warren, A. Wietzorrek, J. Woodward, B.G. Barrell, J. Parkhill, and D.A. Hopwood. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141–147.

    Article  PubMed  Google Scholar 

  • Bignell, D.R., R.F. Seipke, J.C. Huguet-Tapia, A.H. Chambers, R.J. Parry, and R. Loria. 2010. Streptomyces scabies 87–22 contains a coronafacic acid-like biosynthetic cluster that contributes to plant–microbe interactions. Molecular Plant–Microbe Interactions 23: 161–175.

    Article  CAS  PubMed  Google Scholar 

  • Bollag, D.M., P.A. McQueney, J. Zhu, O. Hensens, L. Koupal, J. Liesch, M. Goetz, E. Lazarides, and C.M. Woods. 1995. Epothilones, a new class of microtubule-stabilizing agents with a Taxol-like mechanism of action. Cancer Research 55: 2325–2333.

    CAS  PubMed  Google Scholar 

  • Borisova, S.A., C. Zhang, H. Takahashi, H. Zhang, A.W. Wong, J.S. Thorson, and H.W. Liu. 2006. Substrate specificity of the macrolide-glycosylating enzyme pair DesVII/DesVIII: Opportunities, limitations, and mechanistic hypotheses. Angewandte Chemie International Edition 45: 2748–2753.

    Article  CAS  Google Scholar 

  • Bryskier, A. 2015. Antibacterial agents: Antibacterials and antifungals. Washington, DC: ASM.

    Google Scholar 

  • Chang, Z., P. Flatt, W.H. Gerwick, V.A. Nguyen, C.L. Willis, and D.H. Sherman. 2002. The barbamide biosynthetic gene cluster: A novel marine cyanobacterial system of mixed polyketide synthase (PKS)-non-ribosomal peptide synthetase (NRPS) origin involving an unusual trichloroleucyl starter unit. Gene 296: 235–247.

    Article  CAS  PubMed  Google Scholar 

  • Corcoran, J.W., M.L. Huber, and F.M. Huber. 1977. Relationship of ribosomal binding and antibacterial properties of tylosin-type antibiotics. The Journal of Antibiotics 30: 1012–1014.

    Article  CAS  PubMed  Google Scholar 

  • Dixon, R.A., and N.L. Paiva. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell 7: 1085–1097.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flatt, P.M., S.J. O’Connell, K.L. McPhail, G. Zeller, C.L. Willis, D.H. Sherman, and W.H. Gerwick. 2006. Characterization of the initial enzymatic steps of barbamide biosynthesis. Journal of Natural Products 69: 938–944.

    Article  CAS  PubMed  Google Scholar 

  • Fouces, R., E. Mellado, B. Díez, and J.L. Barredo. 1999. The tylosin biosynthetic cluster from Streptomyces fradiae: Genetic organization of the left region. Microbiology 145: 855–868.

    Article  CAS  PubMed  Google Scholar 

  • Gantt, R.W., P. Peltier-Pain, and J.S. Thorson. 2011. Enzymatic methods for glyco (diversification/randomization) of drugs and small molecules. Natural Product Reports 28: 1811–1853.

    Article  CAS  PubMed  Google Scholar 

  • Gerth, K., N. Bedorf, G. Höfle, H. Irschik, and H. Reichenbach. 1996. Epothilones A and B: Antifungal and cytotoxic compounds from Sorangium cellulosum (Myxobacteria). Production, physicochemical and biological properties. The Journal of Antibiotics 49: 560–563.

    Article  CAS  PubMed  Google Scholar 

  • Gerwick, W.H., and B.S. Moore. 2012. Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chemistry and Biology 19: 85–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gunasekera, S.P., M. Gunasekera, R.E. Longley, and G.K. Schulte. 1990. Discodermolide: A new bioactive polyhydroxylated lactone from the marine sponge Discodermia dissolute. The Journal of Organic Chemistry 55: 4912–4915.

    Article  CAS  Google Scholar 

  • Han, A.R., J.W. Park, M.K. Lee, Y.H. Ban, Y.J. Yoo, E.J. Kim, E. Kim, B.G. Kim, J.K. Sohng, and Y.J. Yoon. 2011a. Development of a Streptomyces venezuelae-based combinatorial biosynthetic system for the production of glycosylated derivatives of doxorubicin and its biosynthetic intermediates. Applied and Environmental Microbiology 77: 4912–4923.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Han, A.R., S.R. Park, J.W. Park, E.Y. Lee, D.M. Kim, B.G. Kim, and Y.J. Yoon. 2011b. Biosynthesis of glycosylated derivatives of tylosin in Streptomyces venezuelae. Journal of Microbiology and Biotechnology 21: 613–616.

    Article  CAS  PubMed  Google Scholar 

  • Han, A.R., P.B. Shinde, J.W. Park, J. Cho, S.R. Lee, Y.H. Ban, Y.J. Yoo, E.J. Kim, E. Kim, S.R. Park, B.G. Kim, D.G. Lee, and Y.J. Yoon. 2012. Engineered biosynthesis of glycosylated derivatives of narbomycin and evaluation of their antibacterial activities. Applied Microbiology and Biotechnology 93: 1147–1156.

    Article  CAS  PubMed  Google Scholar 

  • Harborne, J.B., and C.A. Willams. 2000. Advances in flavonoid research since 1992. Phyotochemistry 55: 481–504.

    Article  CAS  Google Scholar 

  • Harborne, J.B., T.J. Mabry, and H. Mabry. 1975. The flavonoids. London: Champman and Hall.

    Book  Google Scholar 

  • Hertweck, C. 2009. The biosynthetic logic of polyketide diversity. Angewandte Chemie International Edition 48: 4688–4716.

    Article  CAS  Google Scholar 

  • Hong, J.S., S.H. Park, C.Y. Choi, J.K. Sohng, and Y.J. Yoon. 2004. New olivosyl derivatives of methymycin/pikromycin from an engineered strain of Streptomyces venezuelae. FEMS Microbiology Letters 238: 391–399.

    CAS  PubMed  Google Scholar 

  • Hopwood, D.A. 2007. Streptomyces in nature and medicine: The antibiotic markers. New York: Oxford University Press.

    Google Scholar 

  • Hopwood, D.A. 2012. Natural product biosynthesis by microorganisms and plants, part C. Methods in Enzymology 517: 2–449.

    Google Scholar 

  • Ikeda, H., J. Ishikawa, A. Hanamoto, M. Shinose, H. Kikuchi, T. Shiba, Y. Sakaki, M. Hattori, and S. Omura. 2003. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nature Biotechnology 21: 526–531.

    Article  PubMed  Google Scholar 

  • Julien, B., and S. Shah. 2002. Heterologous expression of epothilone biosynthetic genes in Myxococcus xanthus. Antimicrobial Agents and Chemotherapy 46: 2772–2778.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jung, W.S., S.K. Lee, J.S. Hong, S.R. Park, S.J. Jeong, A.R. Han, J.K. Sohng, B.G. Kim, C.Y. Choi, D.H. Sherman, and Y.J. Yoon. 2006. Heterologous expression of tylosin polyketide synthase and production of a hybrid bioactive macrolide in Streptomyces venezuelae. Applied Microbiology and Biotechnology 72: 763–769.

    Article  CAS  PubMed  Google Scholar 

  • Jung, W.S., A.R. Han, J.S. Hong, S.R. Park, C.Y. Choi, J.W. Park, and Y.J. Yoon. 2007. Bioconversion of 12-, 14-, and 16-membered ring aglycones to glycosylated macrolides in an engineered strain of Streptomyces venezuelae. Applied Microbiology and Biotechnology 76: 1373–1381.

    Article  CAS  PubMed  Google Scholar 

  • Jung, W.S., S.J. Jeong, S.R. Park, C.Y. Choi, B.C. Park, J.W. Park, and Y.J. Yoon. 2008. Enhanced heterologous production of desosaminyl macrolides and their hydroxylated derivatives by overexpression of the pikD regulatory gene in Streptomyces venezuelae. Applied and Environmental Microbiology 74: 1972–1979.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jung, W.S., E. Kim, Y.J. Yoo, Y.H. Ban, E.J. Kim, and Y.J. Yoon. 2014. Characterization and engineering of the ethylmalonyl-CoA pathway towards the improved heterologous production of polyketides in Streptomyces venezuelae. Applied Microbiology and Biotechnology 98: 3701–3713.

    Article  CAS  PubMed  Google Scholar 

  • Kharel, M.K., B. Subba, D.B. Basnet, J.S. Woo, H.C. Lee, K. Liou, and J.K. Sohng. 2004. A gene cluster for biosynthesis of kanamycin from Streptomyces kanamyceticus: Comparison with gentamicin biosynthetic gene cluster. Archives of Biochemistry and Biophysics 429: 204–214.

    Article  CAS  PubMed  Google Scholar 

  • Kim, E.J., J.H. Lee, H. Choi, A.R. Pereira, Y.H. Ban, Y.J. Yoo, E. Kim, J.W. Park, D.H. Sherman, W.H. Gerwick, and Y.J. Yoon. 2012. Heterologous production of 4-O-demethylbarbamide, a marine cyanobacterial natural product. Organic Letters 14: 5824–5827.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee, S.K., J.W. Park, J.W. Kim, W.S. Jung, S.R. Park, C.Y. Choi, E.S. Kim, B.S. Kim, J.S. Ahn, D.H. Sherman, and Y.J. Yoon. 2006. Neopikromycin and novapikromycin from the pikromycin biosynthetic pathway of Streptomyces venezuelae. Journal of Natural Products 69: 847–849.

    Article  CAS  PubMed  Google Scholar 

  • Leimkuhler, C., M. Fridman, T. Lupoli, S. Walker, C.T. Walsh, and D. Kahne. 2007. Characterization of rhodosaminyl transfer by the AknS/AknT glycosylation complex and its use in reconstituting the biosynthetic pathway of aclacinomycin A. Journal of the American Chemical Society 129: 10546–10550.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu, W., C. Leimkuhler, G.J. Gatto Jr, R.G. Kruger, M. Oberthür, D. Kahne, and C.T. Walsh. 2005. AknT is an activating protein for the glycosyltransferase AknS in L-aminodeoxysugar transfer to the aglycone of aclacinomycin A. Chemistry and Biology 12: 527–534.

    Article  CAS  PubMed  Google Scholar 

  • Magnet, S., and J.S. Blanchard. 2005. Molecular insights into aminoglycoside action and resistance. Chemical Reviews 105: 477–498.

    Article  CAS  PubMed  Google Scholar 

  • Medema, M.H., A. Trefzer, A. Kovalchuk, M. van den Berg, U. Müller, W. Heijne, L. Wu, M.T. Alam, C.M. Ronning, W.C. Nierman, R.A. Bovenberg, R. Breitling, and E. Takano. 2010. The sequence of a 1.8-Mb bacterial linear plasmid reveals a rich evolutionary reservoir of secondary metabolic pathways. Genome Biology and Evolution 2: 212–224.

    Article  PubMed Central  PubMed  Google Scholar 

  • Minotti, G., P. Menna, E. Salvatorelli, G. Cairo, and L. Gianni. 2004. Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacological Reviews 56: 185–229.

    Article  CAS  PubMed  Google Scholar 

  • Molnár, I., T. Schupp, M. Ono, R. Zirkle, M. Milnamow, B. Nowak-Thompson, N. Engel, C. Toupet, A. Stratmann, D.D. Cyr, J. Gorlach, J.M. Mayo, A. Hu, S. Goff, J. Schmid, and J.M. Ligon. 2000. The biosynthetic gene cluster for the microtubule-stabilizing agents epothilones A and B from Sorangium cellulosum So ce90. Chemistry and Biology 7: 97–109.

    Article  PubMed  Google Scholar 

  • Mutka, S.C., J.R. Carney, Y. Liu, and J. Kennedy. 2006. Heterologous production of epothilone C and D in Escherichia coli. Biochemistry 45: 1321–1330.

    Article  CAS  PubMed  Google Scholar 

  • Nagabhushan, T.L., G.H. Miller, and M.J. Weinstein. 1982. Structure–activity relationships in aminoglycoside–aminocyclitol antibiotics. In The aminoglycosides: Microbiology, clinical use and toxicology, ed. A. Whelton, and H.C. Neu. New York: Marcel Dekker.

    Google Scholar 

  • Newman, D.J., and G.M. Cragg. 2012. Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of Natural Products 75: 311–353.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ohnishi, Y., J. Ishikawa, H. Hara, H. Suzuki, M. Ikenoya, H. Ikeda, A. Yamashita, M. Hattori, and S. Horinouchi. 2008. Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. Journal of Bacteriology 190: 4050–4060.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Olano, C., M.S. Abdelfattah, S. Gullón, A.F. Braña, J. Rohr, C. Méndez, and J.A. Salas. 2008. Glycosylated derivatives of steffimycin: Insights into the role of the sugar moieties for the biological activity. ChemBioChem 9: 624–633.

    Article  CAS  PubMed  Google Scholar 

  • Omura, S., H. Ikeda, J. Ishikawa, A. Hanamoto, C. Takahashi, M. Shinose, Y. Takahashi, H. Horikawa, H. Nakazawa, T. Osonoe, H. Kikuchi, T. Shiba, Y. Sakaki, and M. Hattori. 2001. Genome sequence of an industrial microorganism Streptomyces avermitilis: Deducing the ability of producing secondary metabolites. Proceedings of the National Academy of Sciences USA 98: 12215–12220.

    Article  CAS  Google Scholar 

  • Ongley, S.E., X. Bian, B.A. Neilan, and R. Müller. 2013. Recent advances in the heterologous expression of microbial natural product biosynthetic pathways. Natural Product Reports 30: 1121–1138.

    Article  CAS  PubMed  Google Scholar 

  • Orjala, J., and W.H. Gerwick. 1996. Barbamide, a chlorinated metabolite with molluscicidal activity from the Caribbean cyanobacterium Lyngbya majuscula. Journal of Natural Products 59: 427–430.

    Article  CAS  PubMed  Google Scholar 

  • Osswald, C., G. Zipf, G. Schmidt, J. Maier, H.S. Bernauer, R. Müller, and S.C. Wenzel. 2014. Modular construction of a functional artificial epothilone polyketide pathway. ACS Synthetic Biology 3: 759–772.

    Article  CAS  PubMed  Google Scholar 

  • Park, J.W., W.S. Jung, S.R. Park, B.C. Park, and Y.J. Yoon. 2007. Analysis of intracellular short organic acid-coenzyme A esters from actinomycetes using liquid chromatography–electrospray ionization–mass spectrometry. Journal of Mass Spectrometry 42: 1136–1147.

    Article  CAS  PubMed  Google Scholar 

  • Park, J.W., J.S. Hong, N. Parajuli, W.S. Jung, S.R. Park, S.K. Lim, J.K. Sohng, and Y.J. Yoon. 2008a. Genetic dissection of the biosynthetic route to gentamicin A2 by heterologous expression of its minimal gene set. Proceedings of the National Academy of Sciences USA 105: 8399–8404.

    Article  CAS  Google Scholar 

  • Park, S.R., J.W. Park, W.S. Jung, A.R. Han, Y.H. Ban, E.J. Kim, J.K. Sohng, S.J. Sim, and Y.J. Yoon. 2008b. Heterologous production of epothilones B and D in Streptomyces venezuelae. Applied Microbiology and Biotechnology 81: 109–117.

    Article  CAS  PubMed  Google Scholar 

  • Park, S.R., J.A. Yoon, J.H. Paik, J.W. Park, W.S. Jung, Y.H. Ban, E.J. Kim, Y.J. Yoo, A.R. Han, and Y.J. Yoon. 2009. Engineering of plant-specific phenylpropanoids biosynthesis in Streptomyces venezuelae. Journal of Biotechnology 141: 181–188.

    Article  CAS  PubMed  Google Scholar 

  • Park, S.R., A.R. Han, Y.H. Ban, Y.J. Yoo, E.J. Kim, and Y.J. Yoon. 2010a. Genetic engineering of macrolide biosynthesis: Past advances, current state, and future prospects. Applied Microbiology and Biotechnology 85: 1227–1239.

    Article  CAS  PubMed  Google Scholar 

  • Park, S.R., J.H. Paik, M.S. Ahn, J.W. Park, and Y.J. Yoon. 2010b. Biosynthesis of plant-specific flavones and flavonols in Streptomyces venezuelae. Journal of Microbiology and Biotechnology 20: 1295–1299.

    Article  CAS  PubMed  Google Scholar 

  • Park, J.W., S.R. Park, K.K. Nepal, A.R. Han, Y.H. Ban, Y.J. Yoo, E.J. Kim, E.M. Kim, D. Kim, J.K. Sohng, and Y.J. Yoon. 2011a. Discovery of parallel pathways of kanamycin biosynthesis allows antibiotic manipulation. Nature Chemical Biology 7: 843–852.

    Article  CAS  PubMed  Google Scholar 

  • Park, S.R., M.S. Ahn, A.R. Han, J.W. Park, and Y.J. Yoon. 2011b. Enhanced flavonoid production in Streptomyces venezuelae via metabolic engineering. Journal of Microbiology and Biotechnology 21: 1143–1146.

    Article  CAS  PubMed  Google Scholar 

  • Pullan, S.T., G. Chandra, M.J. Bibb, and M. Merrick. 2011. Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes. BMC Genomics 12: 175–188.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salas, J.A., and C. Méndez. 2007. Engineering the glycosylation of natural products in actinomycetes. Trends in Microbiology 15: 219–232.

    Article  CAS  PubMed  Google Scholar 

  • Shen, B. 2003. Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Current Opinion in Chemical Biology 7: 285–295.

    Article  CAS  PubMed  Google Scholar 

  • Shinde, P.B., A.R. Han, J. Cho, S.R. Lee, Y.H. Ban, Y.J. Yoo, E.J. Kim, E. Kim, M.C. Song, J.W. Park, D.G. Lee, and Y.J. Yoon. 2013. Combinatorial biosynthesis and antibacterial evaluation of glycosylated derivatives of 12-membered macrolide antibiotic YC-17. Journal of Biotechnology 168: 142–148.

    Article  CAS  PubMed  Google Scholar 

  • Springob, K., J. Nakajima, M. Yamazaki, and K. Saito. 2003. Recent advances in the biosynthesis and accumulation of anthocyanins. Natural Product Reports 20: 288–303.

    Article  CAS  PubMed  Google Scholar 

  • Stevens, D.C., T.P. Hari, and C.N. Boddy. 2013. The role of transcription in heterologous expression of polyketides in bacterial hosts. Natural Product Reports 30: 1391–1411.

    Article  CAS  PubMed  Google Scholar 

  • Tang, L., S. Shah, L. Chung, J. Carney, L. Katz, C. Khosla, and B. Julien. 2000. Cloning and heterologous expression of the epothilone gene cluster. Science 287: 640–642.

    Article  CAS  PubMed  Google Scholar 

  • Thapa, L.P., T.J. Oh, H.C. Lee, K. Liou, J.W. Park, Y.J. Yoon, and J.K. Sohng. 2007. Heterologous expression of the kanamycin biosynthetic gene cluster (pSKC2) in Streptomyces venezuelae YJ003. Applied Microbiology and Biotechnology 76: 1357–1364.

    Article  CAS  PubMed  Google Scholar 

  • Toshima, K. 2006. Novel glycosylation methods and their application to natural products synthesis. Carbohydrate Research 341: 1282–1297.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X.J., Y.J. Yan, B. Zhang, J. An, J.J. Wang, J. Tian, L. Jiang, Y.H. Chen, S.X. Huang, M. Yin, J. Zhang, A.L. Gao, C.X. Liu, Z.X. Zhu, and W.S. Xiang. 2010. Genome sequence of the milbemycin-producing bacterium Streptomyces bingchenggensis. Journal of Bacteriology 192: 4526–4527.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weinstein, M.J., G.M. Luedemann, E.M. Oden, G.H. Wagman, J.P. Rosselet, J.A. Marquez, C.T. Coniglio, W. Charney, H.L. Herzog, and J. Black. 1963. Gentamicin: A new antibiotic complex from Micromonospora. Journal of Medicinal Chemistry 6: 463–464.

    Article  CAS  PubMed  Google Scholar 

  • Weymouth-Wilson, A.C. 1997. The role of carbohydrates in biologically active natural products. Natural Product Reports 14: 99–110.

    Article  CAS  PubMed  Google Scholar 

  • Wolucka, B.A., and M. Van Montagu. 2003. GDP-mannose 3′,5′-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. Journal of Biological Chemistry 278: 47483–47490.

    Article  CAS  PubMed  Google Scholar 

  • Xue, Y., and D.H. Sherman. 2000. Alternative modular polyketide synthase expression controls macrolactone structure. Nature 403: 571–575.

    Article  CAS  PubMed  Google Scholar 

  • Xue, Y., and D.H. Sherman. 2001. Biosynthesis and combinatorial biosynthesis of pikromycin-related macrolides in Streptomyces venezuelae. Metabolic Engineering 3: 15–26.

    Article  CAS  PubMed  Google Scholar 

  • Xue, Y., D. Wilson, L. Zhao, Liu Hw, and D.H. Sherman. 1998a. Hydroxylation of macrolactones YC-17 and narbomycin is mediated by the pikC-encoded cytochrome P450 in Streptomyces venezuelae. Chemistry and Biology 5: 661–667.

    Article  CAS  PubMed  Google Scholar 

  • Xue, Y., L. Zhao, H.W. Liu, and D.H. Sherman. 1998b. A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae: Architecture of metabolic diversity. Proceedings of the National Academy of Sciences USA 95: 12111–12116.

    Article  CAS  Google Scholar 

  • Zhang, H., B.A. Boghigian, J. Armando, and B.A. Pfeifer. 2011. Methods and options for the heterologous production of complex natural production. Natural Product Reports 28: 125–151.

    Article  PubMed  Google Scholar 

  • Zhao, L., J. Ahlert, Y.Q. Xue, J.S. Thorson, D.H. Sherman, and H.W. Liu. 1999. Engineering a methymycin/pikromycin–calicheamicin hybrid: Construction of two new macrolides carrying a designed sugar moiety. Journal of the American Chemical Society 121: 9881–9882.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research in authors’ laboratory has been supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (MISP) (2013R1A2A1A01014230), the Intelligent Synthetic Biology Center of the Global Frontier Project funded by MISP (20110031961), High Value-added Food Technology Development Program, Ministry of Agriculture, Food and Rural Affairs, Republic of Korea, and the National Research Council of Science and Technology through the Degree & Research Center program (DRC-14-3-KBSI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeo Joon Yoon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, E.J., Yang, I. & Yoon, Y.J. Developing Streptomyces venezuelae as a cell factory for the production of small molecules used in drug discovery. Arch. Pharm. Res. 38, 1606–1616 (2015). https://doi.org/10.1007/s12272-015-0638-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-015-0638-z

Keywords

Navigation