Skip to main content
Log in

Proteomik-Werkzeuge für Mikroorganismen

  • Wissenschaft  Methoden
  • Umweltmikrobiologie
  • Published:
BIOspektrum Aims and scope

Abstract

Microorganisms play central roles in global elemental cycles and ecosystem functioning. The molecular basis and mechanisms of the various ecophysiological capacities of environmental microbes are, however, often unknown or not clearly understood. In this regard, proteomic approaches promise plenty of opportunities. This short note recapitulates state-of-the-art proteomic tools for environmental microbiology and presents selected research examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Rabus R (2014) Fifteen years of physiological proteo(geno)mics with (marine) environmental bacteria. Arch Physiol Biochem 120:173–187

    Article  CAS  PubMed  Google Scholar 

  2. Rabus R, Trautwein K, Wöhlbrand L (2014) Towards habitat- oriented systems biology of „Aromatoleum aromaticum“ EbN1. Chemical sensing, catabolic network modulation and growth control in anaerobic aromatic compound degradation. Appl Microbiol Biotechnol 98:3371–3388

    Article  CAS  PubMed  Google Scholar 

  3. Teeling H, Fuchs BM, Becher D et al. (2012) Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336:608–611

    Article  CAS  PubMed  Google Scholar 

  4. Wöhlbrand L, Trautwein K, Rabus R (2013) Proteomic tools for environmental microbiology–a roadmap from sample preparation to protein identification and quantification. Proteomics 13:2700–2730

    PubMed  Google Scholar 

  5. Rabus R (2012) An overview of 2D DIGE analysis of marine (environmental) bacteria. In: Cramer R, Westermeier R (Hrsg) Difference gel electrophoresis (DIGE): Methods and Protocols. Methods Mol Biol 854:355–370, Springer Science&Business Media

    Article  CAS  PubMed  Google Scholar 

  6. Zech H, Hensler M, Koßmehl S et al. (2013) Adaptation of Phaeobacter inhibens DSM 17395 to growth with complex nutrients. Proteomics 13:2851–2868

    CAS  PubMed  Google Scholar 

  7. Zech H, Hensler M, Koßmehl S et al. (2013) Dynamics of amino acid utilization in Phaeobacter inhibens DSM 17395. Proteomics 13:2869–2885

    CAS  PubMed  Google Scholar 

  8. Koßmehl S, Wöhlbrand L, Drüppel K et al. (2013) Subcellular protein localization (cell envelope) in Phaeobacter inhibens DSM 17395. Proteomics 13:2743–2760

    PubMed  Google Scholar 

  9. Drüppel K, Hensler M, Trautwein K et al. (2014) Pathways and substrate-specific regulation of amino acid degradation in Phaeobacter inhibens DSM 17395 (archetype of the marine Roseobacter clade). Environ Microbiol 16:218–238

    Article  PubMed  Google Scholar 

  10. Wiegmann K, Hensler M, Wöhlbrand L et al. (2014) Carbohydrate catabolism in Phaeobacter inhibens DSM 17395, member of the marine Roseobacter clade. Appl Environ Microbiol 80:4725–4737

    Article  PubMed Central  PubMed  Google Scholar 

  11. Wöhlbrand L, Kube M, Mussmann M et al. (2013) Complete genome, catabolic sub-proteomes and key-metabolites of Desulfobacula toluolica Tol2, a marine, aromatic compound- degrading, sulfate-reducing bacterium. Environ Microbiol 15:1334–1355

    Article  PubMed  Google Scholar 

  12. Kühner S, Wöhlbrandt L, Hufnagel P et al. (2005) Substrate-dependent regulation of anaerobic ethylbenzene and toluene metabolism in a denitrifying bacterium, strain EbN1. J Bacteriol 187:1493–1503

    Article  PubMed Central  PubMed  Google Scholar 

  13. Wöhlbrand L, Wilkes H, Halder T et al. (2008) Anaerobic degradation of p-ethylphenol by „Aromatoleum aromaticum“ strain EbN1: pathway, involved proteins and regulation. J Bacteriol 190:5699–5709

    Article  PubMed Central  PubMed  Google Scholar 

  14. Büsing I, Höffken W, Breuer M et al. (2015) Molecular genetic and crystal structural analysis of 1-(4-hydroxyphenyl)- ethanol dehydrogenase from „Aromatoleum aromaticum“ EbN1. J Mol Microbiol Biotechnol (im Druck)

    Google Scholar 

  15. von Netzer F, Pilloni G, Kleindienst S et al. (2013) Enhanced gene detection assays for fumarate-adding enzymes allow uncovering of anaerobic hydrocarbon degraders in terrestrial and marine systems. Appl Environ Microbiol 79:543–552

    Article  Google Scholar 

  16. Strijkstra A, Trautwein K, Jarling R et al. (2014) Anaerobic activation of p-cymene in denitrifying Betaproteobacteria: methyl group hydroxylation versus addition to fumarate. Appl Environ Microbiol 80:7592–7603

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Rabus.

Additional information

Ralf Rabus Jahrgang 1966. Biologiestudium an der LMU München. 1995 Promotion. 1995-1996 Postdoc am Max-Planck-Institut (MPI) für marine Mikrobiologie, Bremen. 1997–1999 Postdoc an der University of California, San Diego (UCSD), USA. 1999–2006 Wissenschaftler am MPI für marine Mikrobiologie, Bremen. 2002 Habilitation im Fach Mikrobiologie. Seit 2006 Professor und Leiter der AG Allgemeine und Molekulare Mikrobiologie am Institut für Chemie und Biologie des Meeres (ICBM) der Universität Oldenburg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabus, R. Proteomik-Werkzeuge für Mikroorganismen. Biospektrum 21, 496–501 (2015). https://doi.org/10.1007/s12268-015-0608-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12268-015-0608-5

Navigation