Skip to main content
Log in

Deep Learning Model for Coronary Angiography

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The visual inspection of coronary artery stenosis is known to be significantly affected by variation, due to the presence of other tissues, camera movements, and uneven illumination. More accurate and intelligent coronary angiography diagnostic models are necessary for improving the above problems. In this study, 2980 medical images from 949 patients are collected and a novel deep learning-based coronary angiography (DLCAG) diagnose system is proposed. Firstly, we design a module of coronary classification. Then, we introduce RetinaNet to balance positive and negative samples and improve the recognition accuracy. Additionally, DLCAG adopts instance segmentation to segment the stenosis of vessels and depict the degree of the stenosis vessels. Our DLCAG is available at http://101.132.120.184:8077/. When doctors use our system, all they need to do is login to the system, upload the coronary angiography videos. Then, a diagnose report is automatically generated.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation, to any qualified researcher upon request.

References

  1. Khera AV, Kathiresan S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat Rev Genet. 2017;18:331–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1459–1544.

  3. Lemkes JS. Coronary angiography after cardiac arrest: a deep dive for PEARL. Circulation. 2020;142:2013–5.

    Article  CAS  PubMed  Google Scholar 

  4. Adjedj J, Xaplanteris P, Toth G, Ferrara A, Pellicano M, Ciccarelli G, Floré V, Barbato E and De Bruyne B. Visual and quantitative assessment of coronary stenoses at angiography versus fractional flow reserve: the impact of risk factors. Circ Cardiovasc Imaging. 2017;10(7):e006243.

  5. Brilakis ES, Mashayekhi K, Tsuchikane E, Abi Rafeh N, Alaswad K, Araya M, Avran A, Azzalini L, Babunashvili AM, Bayani B, Bhindi R, Boudou N, Boukhris M, Božinović N, Bryniarski L, Bufe A, Buller CE, Burke MN, Büttner HJ, Cardoso P, Carlino M, Christiansen EH, Colombo A, Croce K, Damas de Los Santos F, De Martini T, Dens J, Di Mario C, Dou K, Egred M, ElGuindy AM, Escaned J, Furkalo S, Gagnor A, Galassi AR, Garbo R, Ge J, Goel PK, Goktekin O, Grancini L, Grantham JA, Hanratty C, Harb S, Harding SA, Henriques JPS, Hill JM, Jaffer FA, Jang Y, Jussila R, Kalnins A, Kalyanasundaram A, Kandzari DE, Kao HL, Karmpaliotis D, Kassem HH, Knaapen P, Kornowski R, Krestyaninov O, Kumar AVG, Laanmets P, Lamelas P, Lee SW, Lefevre T, Li Y, Lim ST, Lo S, Lombardi W, McEntegart M, Munawar M, Navarro Lecaro JA, Ngo HM, Nicholson W, Olivecrona GK, Padilla L, Postu M, Quadros A, Quesada FH, Prakasa Rao VS, Reifart N, Saghatelyan M, Santiago R, Sianos G, Smith E, J CS, Stone GW, Strange JW, Tammam K, Ungi I, Vo M, Vu VH, Walsh S, Werner GS, Wollmuth JR, Wu EB, Wyman RM, Xu B, Yamane M, Ybarra LF, Yeh RW, Zhang Q and Rinfret S. Guiding principles for chronic total occlusion percutaneous coronary intervention. Circulation. 2019;140:420–433.

  6. Zhang H, Mu L, Hu S, Nallamothu BK, Lansky AJ, Xu B, Bouras G, Cohen DJ, Spertus JA, Masoudi FA, Curtis JP, Gao R, Ge J, Yang Y, Li J, Li X, Zheng X, Li Y, Krumholz HM, Jiang L. Comparison of physician visual assessment with quantitative coronary angiography in assessment of stenosis severity in China. JAMA Intern Med. 2018;178:239–47.

    Article  PubMed  PubMed Central  Google Scholar 

  7. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.

    Article  CAS  PubMed  Google Scholar 

  8. Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, Cui C, Corrado G, Thrun S, Dean J. A guide to deep learning in healthcare. Nat Med. 2019;25:24–9.

    Article  CAS  PubMed  Google Scholar 

  9. Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2021;18:203–11.

    Article  CAS  PubMed  Google Scholar 

  10. Milea D, Najjar RP, Jiang Z, Ting D, Vasseneix C, Xu X, AghsaeiFard M, Fonseca P, Vanikieti K, Lagrèze WA, La Morgia C, Cheung CY, Hamann S, Chiquet C, Sanda N, Yang H, Mejico LJ, Rougier M-B, Kho R, Tran THC, Singhal S, Gohier P, Clermont-Vignal C, Cheng C-Y, Jonas JB, Yu-Wai-Man P, Fraser CL, Chen JJ, Ambika S, Miller NR, Liu Y, Newman NJ, Wong TY, Biousse V. Artificial intelligence to detect papilledema from ocular fundus photographs. N Engl J Med. 2020;382:1687–95.

    Article  PubMed  Google Scholar 

  11. SippensGroenewegen A, Spekhorst H, Hemel NMv, Kingma JH, Hauer RNW, Barker JMTd, Grimbergen CA, Janse MJ and Dunning AJ. Value of body surface mapping in localizing the site of origin of ventricular tachycardia in patients with previous myocardial infarction. J Am Coll Cardiol. 1994;24:1708–1724.

  12. Gong D, Wu L, Zhang J, Mu G, Shen L, Liu J, Wang Z, Zhou W, An P, Huang X, Jiang X, Li Y, Wan X, Hu S, Chen Y, Hu X, Xu Y, Zhu X, Li S, Yao L, He X, Chen D, Huang L, Wei X, Wang X, Yu H. Detection of colorectal adenomas with a real-time computer-aided system (ENDOANGEL): a randomised controlled study. Lancet Gastroenterol Hepatol. 2020;5:352–61.

    Article  PubMed  Google Scholar 

  13. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. 2016 IEEE Conf Comput Vision Pattern Recogn (CVPR). 2016;6:770–778.

  14. Zhu X, Li X, Ong K, Zhang W, Li W, Li L, Young D, Su Y, Shang B, Peng L, Xiong W, Liu Y, Liao W, Xu J, Wang F, Liao Q, Li S, Liao M, Li Y, Rao L, Lin J, Shi J, You Z, Zhong W, Liang X, Han H, Zhang Y, Tang N, Hu A, Gao H, Cheng Z, Liang L, Yu W, Ding Y. Hybrid AI-assistive diagnostic model permits rapid TBS classification of cervical liquid-based thin-layer cell smears. Nat Commun. 2021;12:3541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin TY, Goyal P, Girshick R, He K, Dollar P. Focal loss for dense object detection. IEEE Trans Pattern Anal Mach Intell. 2020;42:318–27.

    Article  PubMed  Google Scholar 

  16. He K, Gkioxari G, Dollar P, Girshick R. Mask R-CNN. IEEE Trans Pattern Anal Mach Intell. 2020;42:386–97.

    Article  PubMed  Google Scholar 

  17. Li D, Bledsoe JR, Zeng Y, Liu W, Hu Y, Bi K, Liang A, Li S. A deep learning diagnostic platform for diffuse large B-cell lymphoma with high accuracy across multiple hospitals. Nat Commun. 2020;11:6004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang K-C, Huang C-S, Su M-Y, Hung C-L, Tu Y-CE, Lin L-C, Hwang J-J. Artificial intelligence aids cardiac image quality assessment for improving precision in strain measurements. JACC Cardiovasc Imaging. 2021;14:335–45.

    Article  PubMed  Google Scholar 

  19. Moon JH, Lee DY, Cha WC, Chung MJ, Lee KS, Cho BH, Choi JH. Automatic stenosis recognition from coronary angiography using convolutional neural networks. Comput Methods Programs Biomed. 2021;198:105819.

    Article  PubMed  Google Scholar 

  20. Constantinescu L, Kim J, Feng DD. SparkMed: a framework for dynamic integration of multimedia medical data into distributed m-Health systems. IEEE Trans Inf Technol Biomed. 2012;16:40–52.

    Article  PubMed  Google Scholar 

  21. Cong C, Kato Y, Vasconcellos HD, Lima J and Venkatesh B. Automated stenosis detection and classification in X-ray angiography using deep neural network. 2019 IEEE Int Conf Bioinform Biomed (BIBM). 2019;11:18–21

  22. Au B, Shaham U, Dhruva S, Bouras G, Krumholz H. Automated characterization of stenosis in invasive coronary angiography images with convolutional neural networks. 2018;7:1–12.

  23. Quan L, Wu B, Mao S, Yang C, Li H. An instance segmentation-based method to obtain the leaf age and plant centre of weeds in complex field environments. Sensors (Basel). 2021;21(10):3389–3411.

  24. Zreik M, van Hamersvelt RW, Wolterink JM, Leiner T, Viergever MA, Isgum I. A Recurrent CNN for automatic detection and classification of coronary artery plaque and stenosis in coronary CT angiography. IEEE Trans Med Imaging. 2019;38:1588–98.

    Article  PubMed  Google Scholar 

  25. Zreik M, van Hamersvelt RW, Wolterink JM, Leiner T, Viergever MA, Isgum I. Automatic detection and characterization of coronary artery plaque and stenosis using a recurrent convolutional neural network in coronary CT angiography. 2018;9:7–11.

  26. Eberhard M, Nadarevic T, Cousin A, von Spiczak J, Hinzpeter R, Euler A, Morsbach F, Manka R, Keller DI, Alkadhi H. Machine learning-based CT fractional flow reserve assessment in acute chest pain: first experience. Cardiovasc Diagn Ther. 2020;10:820–30.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the Department of Science and Technology of Jilin Province (No. 20200708112YY), the National Natural Science Foundation of China (No. 61972174 and 62172187).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunli Song.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Associate Editor Angela Taylor oversaw the review of this article

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, H., Chen, B., Guan, R. et al. Deep Learning Model for Coronary Angiography. J. of Cardiovasc. Trans. Res. 16, 896–904 (2023). https://doi.org/10.1007/s12265-023-10368-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-023-10368-8

Keywords

Navigation