Skip to main content

Advertisement

Log in

Harnessing Electronic Medical Records in Cardiovascular Clinical Practice and Research

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The use of electronic medical records has rapidly been adopted world-wide, which has resulted in multiple new opportunities for cardiovascular research. These include the following: (1) the development and assessment of clinical decision tools, meant to increase quality of care; (2) harnessing data linkages to examine genetic, epidemiological, and pharmacological associations on an unprecedented scale; and (3) harnessing electronic medical records to facilitate the conduct of cardiovascular clinical trials. While these opportunities promise to revolutionize cardiovascular care and research, enthusiasm should be tempered while further assessment of true clinical utility has been undertaken.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

EMR:

Electronic medical record

FH:

Familial hypercholesterolemia

References

  1. Berner ES, Detmer DE, Simborg D. Will the wave finally break? A brief view of the adoption of electronic medical records in the United States. J Am Med Inform Assoc. 2005;12(1):3–7. https://doi.org/10.1197/jamia.M1664.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chang F, Gupta N. Progress in electronic medical record adoption in Canada. Can Fam Physician. 2015;61(12):1076–84.

    PubMed  PubMed Central  Google Scholar 

  3. Dranove D, Garthwaite C, Li B, Ody C. Investment subsidies and the adoption of electronic medical records in hospitals. J Health Econ. 2015;44:309–19. https://doi.org/10.1016/j.jhealeco.2015.10.001.

    Article  PubMed  Google Scholar 

  4. Thompson G, O’Horo JC, Pickering BW, Herasevich V. Impact of the electronic medical record on mortality, length of stay, and cost in the hospital and ICU: a systematic review and metaanalysis*. Crit Care Med. 2015;43(6):1276–82. https://doi.org/10.1097/CCM.0000000000000948.

  5. Irani JS, Middleton JL, Marfatia R, Omana ET, D’Amico F. The use of electronic health records in the exam room and patient satisfaction: a systematic review. J Am Board Fam Med. 2009;22(5):553–62. https://doi.org/10.3122/jabfm.2009.05.080259.

    Article  PubMed  Google Scholar 

  6. Liu J, Luo L, Zhang R, Huang T. Patient satisfaction with electronic medical/health record: a systematic review. Scand J Caring Sci. 2013;27(4):785–91. https://doi.org/10.1111/scs.12015.

    Article  PubMed  Google Scholar 

  7. Hillestad R, Bigelow J, Bower A, Girosi F, Meili R, Scoville R, et al. Can electronic medical record systems transform health care? Potential health benefits, savings, and costs. Health Aff. 2005;24(5):1103–17.

    Article  Google Scholar 

  8. Manca DP. Do electronic medical records improve quality of care? Yes. 2015;61(10):846–7.

    Google Scholar 

  9. Moja L, Kwag KH, Lytras T, Bertizzolo L, Brandt L, Pecoraro V, et al. Effectiveness of computerized decision support systems linked to electronic health records: a systematic review and meta-analysis. Am J Public Health. 2014;104(12):e12–22.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bright TJ, Wong A, Dhurjati R, Bristow E, Bastian L, Coeytaux RR, et al. Effect of clinical decision-support systems. Ann Intern Med. 2012;157(1):29–43. https://doi.org/10.7326/0003-4819-157-1-201207030-00450.

    Article  PubMed  Google Scholar 

  11. Garg AX, Adhikari NK, McDonald H, Rosas-Arellano MP, Devereaux PJ, Beyene J, et al. Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: a systematic review. JAMA. 2005;293(10):1223–38.

    Article  CAS  PubMed  Google Scholar 

  12. Shojania KG, Jennings A, Mayhew A, Ramsay CR, Eccles MP, Grimshaw J. The effects of on‐screen, point of care computer reminders on processes and outcomes of care. Cochrane Database Syst Rev. 2009;(3):CD001096. https://doi.org/10.1002/14651858.CD001096.pub2.

  13. Van de Velde S, Heselmans A, Delvaux N, Brandt L, Marco-Ruiz L, Spitaels D, et al. A systematic review of trials evaluating success factors of interventions with computerised clinical decision support. Implement Sci. 2018;13(1):114. https://doi.org/10.1186/s13012-018-0790-1.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gill JM, Chen YX, Glutting JJ, Diamond JJ, Lieberman MI. Impact of decision support in electronic medical records on lipid management in primary care. Popul Health Manag. 2009;12(5):221–6.

    Article  PubMed  Google Scholar 

  15. DeSantes K, Dodge A, Eickhoff J, Peterson AL. Improving universal pediatric lipid screening. J Pediatr. 2017;188:87–90. https://doi.org/10.1016/j.jpeds.2017.05.030.

    Article  PubMed  Google Scholar 

  16. van Wyk JT, van Wijk MA, Sturkenboom MC, Mosseveld M, Moorman PW, van der Lei J. Electronic alerts versus on-demand decision support to improve dyslipidemia treatment: a cluster randomized controlled trial. Circulation. 2008;117(3):371–8.

    Article  PubMed  Google Scholar 

  17. Ali SM, Giordano R, Lakhani S, Walker DM. A review of randomized controlled trials of medical record powered clinical decision support system to improve quality of diabetes care. Int J Med Informatics. 2016;87:91–100. https://doi.org/10.1016/j.ijmedinf.2015.12.017.

    Article  Google Scholar 

  18. Jeffery R, Iserman E, Haynes RB. the CSRT Can computerized clinical decision support systems improve diabetes management? A systematic review and meta-analysis. Diabet Med. 2013;30(6):739–45. https://doi.org/10.1111/dme.12087.

    Article  CAS  PubMed  Google Scholar 

  19. Hannon TS, Dugan TM, Saha CK, McKee SJ, Downs SM, Carroll AE. Effectiveness of computer automation for the diagnosis and management of childhood type 2 diabetes: a randomized clinical trial. JAMA Pediatr. 2017;171(4):327–34. https://doi.org/10.1001/jamapediatrics.2016.4207.

    Article  PubMed  PubMed Central  Google Scholar 

  20. O’Connor PJ, Sperl-Hillen JM, Rush WA, Johnson PE, Amundson GH, Asche SE, et al. Impact of electronic health record clinical decision support on diabetes care: a randomized trial. Ann Fam Med. 2011;9(1):12–21.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gilmer TP, O’Connor PJ, Sperl-Hillen JM, Rush WA, Johnson PE, Amundson GH, et al. Cost-effectiveness of an electronic medical record based clinical decision support system. Health Serv Res. 2012;47(6):2137–58. https://doi.org/10.1111/j.1475-6773.2012.01427.x.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Evans RS, Kfoury AG, Horne BD, Lloyd JF, Benuzillo J, Rasmusson KD, et al. Clinical decision support to efficiently identify patients eligible for advanced heart failure therapies. J Cardiac Fail. 2017;23(10):719–26. https://doi.org/10.1016/j.cardfail.2017.08.449.

    Article  Google Scholar 

  23. Toth-Pal E, Wårdh I, Strender L-E, Nilsson G. A guideline-based computerised decision support system (CDSS) to influence general practitioners management of chronic heart failure. J Innov Health Inform. 2008;16(1):29–39.

    Article  Google Scholar 

  24. McKie PM, Kor DJ, Cook DA, Kessler ME, Carter RE, Wilson PM, et al. Computerized advisory decision support for cardiovascular diseases in primary care: a cluster randomized trial. Am J Med. 2020;133(6):750-6.e2. https://doi.org/10.1016/j.amjmed.2019.10.039.

    Article  PubMed  Google Scholar 

  25. Choi D-J, Park JJ, Ali T, Lee S. Artificial intelligence for the diagnosis of heart failure. npj Digit Med. 2020;3(1):54. https://doi.org/10.1038/s41746-020-0261-3.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Baykal D, Malisanovic G, Raval N. A novel clinical decision support system for diagnosis and treatment of heart failure: concordance with expert decision. J Card Fail. 2019;25(8 Supplement):S120–1. https://doi.org/10.1016/j.cardfail.2019.07.342.

    Article  Google Scholar 

  27. Matheny ME, Whicher D, Thadaney IS. Artificial intelligence in health care: a report from the National Academy of Medicine. JAMA. 2020;323(6):509–10. https://doi.org/10.1001/jama.2019.21579.

    Article  PubMed  Google Scholar 

  28. Chernoby K, Lucey MF, Hartner CL, Dehoorne M, Edwin SB. Impact of a clinical decision support tool targeting QT-prolonging medications. Am J Health-Syst Pharm. 2020;77(Supplement 4):S111–7.

    Article  PubMed  Google Scholar 

  29. Cox JL, Parkash R, Foster GA, Xie F, MacKillop JH, Ciaccia A, et al. Integrated Management Program Advancing Community Treatment of Atrial Fibrillation (IMPACT-AF): a cluster randomized trial of a computerized clinical decision support tool. Am Heart J. 2020;224:35–46. https://doi.org/10.1016/j.ahj.2020.02.019.

    Article  PubMed  Google Scholar 

  30. Sennesael A-L, Krug B, Sneyers B, Spinewine A. Do computerized clinical decision support systems improve the prescribing of oral anticoagulants? Syst Rev Thromb Res. 2020;187:79–87. https://doi.org/10.1016/j.thromres.2019.12.023.

    Article  CAS  Google Scholar 

  31. Murray MD, Harris LE, Overhage JM, Zhou X-H, Eckert GJ, Smith FE, et al. Failure of computerized treatment suggestions to improve health outcomes of outpatients with uncomplicated hypertension: results of a randomized controlled trial. Pharmacother: J Human Pharmacol Drug Ther. 2004;24(3):324–37. https://doi.org/10.1592/phco.24.4.324.33173.

    Article  Google Scholar 

  32. Smulowitz PB, Dizitzer Y, Tadiri S, Thibodeau L, Jagminas L, Novack V. Impact of implementation of the HEART pathway using an electronic clinical decision support tool in a community hospital setting. Am J Emerg Med. 2018;36(3):408–13.

    Article  PubMed  Google Scholar 

  33. Lin FY, Dunning AM, Narula J, Shaw LJ, Gransar H, Berman DS, et al. Impact of an automated multimodality point-of-order decision support tool on rates of appropriate testing and clinical decision making for individuals with suspected coronary artery disease: a prospective multicenter study. J Am Coll Cardiol. 2013;62(4):308–16.

    Article  PubMed  Google Scholar 

  34. Bejjanki H, Mramba LK, Beal SG, Radhakrishnan N, Bishnoi R, Shah C, et al. The role of a best practice alert in the electronic medical record in reducing repetitive lab tests. Clinicoecon Outcomes Res. 2018;10(611–8):7. https://doi.org/10.2147/ceor.S167499.

    Article  Google Scholar 

  35. Bennett T, Russell S, King J, Schilling L, Voong C, Rogers N, et al. Accuracy of the Epic sepsis prediction model in a regional health system. arXiv preprint arXiv:190207276. 2019.

  36. Wong A, Otles E, Donnelly JP, Krumm A, McCullough J, DeTroyer-Cooley O, et al. External validation of a widely implemented proprietary sepsis prediction model in hospitalized patients. JAMA Intern Med. 2021;181(8):1065–70. https://doi.org/10.1001/jamainternmed.2021.2626.

    Article  PubMed  Google Scholar 

  37. Van de Velde S, Kunnamo I, Roshanov P, Kortteisto T, Aertgeerts B, Vandvik PO, et al. The GUIDES checklist: development of a tool to improve the successful use of guideline-based computerised clinical decision support. Implement Sci. 2018;13(1):1–12.

    Google Scholar 

  38. Laws MB, Michaud J, Shield R, McQuade W, Wilson IB. Comparison of electronic health record-based and claims-based diabetes care quality measures: causes of discrepancies. Health Serv Res. 2018;53(Suppl 1):2988–3006. https://doi.org/10.1111/1475-6773.12819.

    Article  PubMed  Google Scholar 

  39. Safarova MS, Liu H, Kullo IJ. Rapid identification of familial hypercholesterolemia from electronic health records: the SEARCH study. J Clin Lipidol. 2016;10(5):1230–9. https://doi.org/10.1016/j.jacl.2016.08.001.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Abul-HusnNoura S, Manickam K, Jones Laney K, Wright Eric A, Hartzel Dustin N, Gonzaga-Jauregui C, et al. Genetic identification of familial hypercholesterolemia within a single U.S. health care system. Science. 2016;354(6319):aaf7000. https://doi.org/10.1126/science.aaf7000.

    Article  CAS  Google Scholar 

  41. Patel P, Hu Y, Kolinovsky A, Geng Z, Ruhl J, Krishnamurthy S, et al. Hidden burden of electronic health record-identified familial hypercholesterolemia: clinical outcomes and cost of medical care. J Am Heart Assoc. 2019;8(13):e011822. https://doi.org/10.1161/JAHA.118.011822.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shao S-C, Chan Y-Y, Kao Yang Y-H, Lin S-J, Hung M-J, Chien R-N, et al. The Chang Gung Research Database—a multi-institutional electronic medical records database for real-world epidemiological studies in Taiwan. Pharmacoepidemiol Drug Saf. 2019;28(5):593–600. https://doi.org/10.1002/pds.4713.

    Article  PubMed  Google Scholar 

  43. Persell SD, Dunne AP, Lloyd-Jones DM, Baker DW. Electronic health record-based cardiac risk assessment and identification of unmet preventive needs. Med Care. 2009;47(4):418–24. https://doi.org/10.1097/MLR.0b013e31818dce21.

    Article  PubMed  Google Scholar 

  44. Shameer K, Johnson KW, Yahi A, Miotto R, Li LI, Ricks D, et al. Predictive modeling of hospital readmission rates using electronic medical record-wide machine learning: a case-study using Mount Sinai heart failure cohort. Pac Symp Biocomput. 2017;22:276–87. https://doi.org/10.1142/9789813207813_0027.

    Article  PubMed  Google Scholar 

  45. Golas SB, Shibahara T, Agboola S, Otaki H, Sato J, Nakae T, et al. A machine learning model to predict the risk of 30-day readmissions in patients with heart failure: a retrospective analysis of electronic medical records data. BMC Med Inform Decis Mak. 2018;18(1):1–17.

    Article  Google Scholar 

  46. Kolek MJ, Graves AJ, Xu M, Bian A, Teixeira PL, Shoemaker MB, et al. Evaluation of a prediction model for the development of atrial fibrillation in a repository of electronic medical records. JAMA Cardiol. 2016;1(9):1007–13. https://doi.org/10.1001/jamacardio.2016.3366.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Arruda-Olson AM, Afzal N, Priya Mallipeddi V, Said A, Moussa Pacha H, Moon S, et al. Leveraging the electronic health record to create an automated real-time prognostic tool for peripheral arterial disease. J Am Heart Assoc. 2018;7(23):e009680. https://doi.org/10.1161/JAHA.118.009680.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Huang Z, Chan T-M, Dong W. MACE prediction of acute coronary syndrome via boosted resampling classification using electronic medical records. J Biomed Inform. 2017;66:161–70.

    Article  PubMed  Google Scholar 

  49. Goldstein BA, Navar AM, Pencina MJ, Ioannidis JPA. Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review. J Am Med Inform Assoc. 2016;24(1):198–208. https://doi.org/10.1093/jamia/ocw042.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Denny JC, Ritchie MD, Crawford DC, Schildcrout JS, Ramirez AH, Pulley JM, et al. Identification of genomic predictors of atrioventricular conduction. Circulation. 2010;122(20):2016–21. https://doi.org/10.1161/CIRCULATIONAHA.110.948828.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hoffmann TJ, Theusch E, Haldar T, Ranatunga DK, Jorgenson E, Medina MW, et al. A large electronic-health-record-based genome-wide study of serum lipids. Nat Genet. 2018;50(3):401–13. https://doi.org/10.1038/s41588-018-0064-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rasmussen-Torvik LJ, Stallings SC, Gordon AS, Almoguera B, Basford MA, Bielinski SJ, et al. Design and anticipated outcomes of the eMERGE-PGx project: a multicenter pilot for preemptive pharmacogenomics in electronic health record systems. Clin Pharmacol Ther. 2014;96(4):482–9. https://doi.org/10.1038/clpt.2014.137.

    Article  CAS  PubMed  Google Scholar 

  53. Kullo IJ, Jouni H, Austin EE, Brown S-A, Kruisselbrink TM, Isseh IN, et al. Incorporating a genetic risk score into coronary heart disease risk estimates: effect on low-density lipoprotein cholesterol levels (the MI-GENES Clinical Trial). Circulation. 2016;133(12):1181–8. https://doi.org/10.1161/CIRCULATIONAHA.115.020109.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hall JL, Ryan JJ, Bray BE, Brown C, Lanfear D, Newby LK, et al. Merging electronic health record data and genomics for cardiovascular research. Circ: Cardiovasc Genet. 2016;9(2):193–202. https://doi.org/10.1161/HCG.0000000000000029.

    Article  PubMed  Google Scholar 

  55. Kim D-H, Lee J-E, Kim Y-G, Lee Y, Seo D-W, Lee KH, et al. High-throughput algorithm for discovering new drug indications by utilizing large-scale electronic medical record data. Clin Pharmacol Ther. 2020;108(6):1299–307. https://doi.org/10.1002/cpt.1980.

    Article  CAS  PubMed  Google Scholar 

  56. Wu P, Nelson SD, Zhao J, Stone CA Jr, Feng Q, Chen Q, et al. DDIWAS: High-throughput electronic health record-based screening of drug-drug interactions. J Am Med Inform Assoc. 2021;28(7):1421–30. https://doi.org/10.1093/jamia/ocab019.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Shuey M, Perkins B, Nian H, Yu C, Luther JM, Brown N. Retrospective cohort study to characterise the blood pressure response to spironolactone in patients with apparent therapy-resistant hypertension using electronic medical record data. BMJ Open. 2020;10(5):e033100. https://doi.org/10.1136/bmjopen-2019-033100.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gobbel GT, Matheny ME, Reeves RR, Akeroyd JM, Turchin A, Ballantyne CM, et al. Leveraging structured and unstructured electronic health record data to detect reasons for suboptimal statin therapy use in patients with atherosclerotic cardiovascular disease. Am J Prev Cardiol. 2022;9:100300. https://doi.org/10.1016/j.ajpc.2021.100300.

    Article  PubMed  Google Scholar 

  59. Lyon A, Ariga R, Mincholé A, Mahmod M, Ormondroyd E, Laguna P, et al. Distinct ECG phenotypes identified in hypertrophic cardiomyopathy using machine learning associate with arrhythmic risk markers. Front Physiol. 2018;9:213. https://doi.org/10.3389/fphys.2018.00213.

  60. SamadManar D, Ulloa A, Wehner Gregory J, Jing L, Hartzel D, Good Christopher W, et al. Predicting survival from large echocardiography and electronic health record datasets. JACC Cardiovasc Imaging. 2019;12(4):681–9. https://doi.org/10.1016/j.jcmg.2018.04.026.

    Article  CAS  Google Scholar 

  61. Tam CS, Gullick J, Saavedra A, Vernon ST, Figtree GA, Chow CK, et al. Combining structured and unstructured data in EMRs to create clinically-defined EMR-derived cohorts. BMC Med Inform Decis Mak. 2021;21(1):91. https://doi.org/10.1186/s12911-021-01441-w.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Saavedra A, Morris RW, Tam CS, Killedar M, Ratwatte S, Huynh R, et al. Validation of acute myocardial infarction (AMI) in electronic medical records: the SPEED-EXTRACT Study. medRxiv. 2020:2020.12.08.20245720 https://doi.org/10.1101/2020.12.08.20245720

  63. Hernandez-Boussard T, Monda KL, Crespo BC, Riskin D. Real world evidence in cardiovascular medicine: ensuring data validity in electronic health record-based studies. J Am Med Inform Assoc. 2019;26(11):1189–94. https://doi.org/10.1093/jamia/ocz119.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bielinski SJ, Pathak J, Carrell DS, Takahashi PY, Olson JE, Larson NB, et al. A robust e-epidemiology tool in phenotyping heart failure with differentiation for preserved and reduced ejection fraction: the electronic medical records and genomics (eMERGE) network. J Cardiovasc Transl Res. 2015;8(8):475–83. https://doi.org/10.1007/s12265-015-9644-2.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Blecker S, Katz SD, Horwitz LI, Kuperman G, Park H, Gold A, et al. Comparison of approaches for heart failure case identification from electronic health record data. JAMA Cardiol. 2016;1(9):1014–20. https://doi.org/10.1001/jamacardio.2016.3236.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Mull HJ, Stolzmann KL, Shin MH, Kalver E, Schweizer ML, Branch-Elliman W. Novel method to flag cardiac implantable device infections by integrating text mining with structured data in the Veterans Health Administration’s electronic medical record. JAMA Network Open. 2020;3(9):e2012264-e. https://doi.org/10.1001/jamanetworkopen.2020.12264.

    Article  Google Scholar 

  67. Wang Y, Ng K, Byrd RJ, Hu J, Ebadollahi S, Daar Z, et al., editors. Early detection of heart failure with varying prediction windows by structured and unstructured data in electronic health records. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2015 25–29 Aug. 2015:2530–33. https://doi.org/10.1109/EMBC.2015.7318907.

  68. Plante TB, Gleason KT, Miller HN, Charleston J, McArthur K, Himmelfarb CD, et al. Recruitment of trial participants through electronic medical record patient portal messaging: a pilot study. Clin Trials. 2020;17(1):30–8. https://doi.org/10.1177/1740774519873657.

    Article  PubMed  Google Scholar 

  69. Miller HN, Charleston J, Wu B, Gleason K, White K, Dennison Himmelfarb CR, et al. Use of electronic recruitment methods in a clinical trial of adults with gout. Clin trials (London, England). 2021;18(1):92–103. https://doi.org/10.1177/1740774520956969.

    Article  Google Scholar 

  70. Conley S, O’Connell M, Linsky S, Moemeka L, Darden JWt, Gaiser EC, et al. Evaluating recruitment strategies for a randomized clinical trial with heart failure patients. West J Nurs Res. 2021;43(8):785–90. https://doi.org/10.1177/0193945920970229.

    Article  PubMed  Google Scholar 

  71. Treweek S, Pearson E, Smith N, Neville R, Sargeant P, Boswell B, et al. Desktop software to identify patients eligible for recruitment into a clinical trial: using SARMA to recruit to the ROAD feasibility trial. Inform Prim Care. 2010;18(1):51–8. https://doi.org/10.14236/jhi.v18i1.753.

    Article  PubMed  Google Scholar 

  72. Rollman BL, Fischer GS, Zhu F, Belnap BH. Comparison of electronic physician prompts versus waitroom case-finding on clinical trial enrollment. J Gen Intern Med. 2008;23(4):447–50. https://doi.org/10.1007/s11606-007-0449-0.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Effoe VS, Katula JA, Kirk JK, Pedley CF, Bollhalter LY, Brown WM, et al. The use of electronic medical records for recruitment in clinical trials: findings from the Lifestyle Intervention for Treatment of Diabetes trial. Trials. 2016;17(1):496. https://doi.org/10.1186/s13063-016-1631-7.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rollman BL, Herbeck Belnap B, Abebe KZ, Spring MB, Rotondi AJ, Rothenberger SD, et al. Effectiveness of online collaborative care for treating mood and anxiety disorders in primary care: a randomized clinical trial. JAMA Psychiat. 2018;75(1):56–64. https://doi.org/10.1001/jamapsychiatry.2017.3379.

    Article  Google Scholar 

  75. Schmickl CN, Li M, Li G, Wetzstein MM, Herasevich V, Gajic O, et al. The accuracy and efficiency of electronic screening for recruitment into a clinical trial on COPD. Respir Med. 2011;105(10):1501–6. https://doi.org/10.1016/j.rmed.2011.04.012.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Herasevich V, Pieper MS, Pulido J, Gajic O. Enrollment into a time sensitive clinical study in the critical care setting: results from computerized septic shock sniffer implementation. J Am Med Inform Assoc. 2011;18(5):639–44.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ramsey TM, Snyder JK, Lovato LC, Roumie CL, Glasser SP, Cosgrove NM, et al. Recruitment strategies and challenges in a large intervention trial: Systolic Blood Pressure Intervention Trial. Clin Trials (London, England). 2016;13(3):319–30. https://doi.org/10.1177/1740774516631735.

    Article  Google Scholar 

  78. Elkhenini HF, Davis KJ, Stein ND, New JP, Delderfield MR, Gibson M, et al. Using an electronic medical record (EMR) to conduct clinical trials: Salford Lung Study feasibility. BMC Med Inform Decis Mak. 2015;15(1):8. https://doi.org/10.1186/s12911-015-0132-z.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Miotto R, Weng C. Case-based reasoning using electronic health records efficiently identifies eligible patients for clinical trials. J Am Med Inform Assoc. 2015;22(e1):e141–50. https://doi.org/10.1093/jamia/ocu050.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Velarde KE, Romesser JM, Johnson MR, Clegg DO, Efimova O, Oostema SJ, et al. An initiative using informatics to facilitate clinical research planning and recruitment in the VA health care system. Contemp Clin Trials Commun. 2018;11:107–12. https://doi.org/10.1016/j.conctc.2018.07.001.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Pedula KL, Hillier TA, Ogasawara KK, Vesco KK, Lubarsky S, Oshiro CES, et al. A randomized pragmatic clinical trial of gestational diabetes screening (ScreenR2GDM): study design, baseline characteristics, and protocol adherence. Contemp Clin trials. 2019;85:105829. https://doi.org/10.1016/j.cct.2019.105829.

    Article  PubMed  PubMed Central  Google Scholar 

  82. D’Avolio L, Ferguson R, Goryachev S, Woods P, Sabin T, O’Neil J, et al. Implementation of the Department of Veterans Affairs’ first point-of-care clinical trial. J Am Med Inform Assoc. 2012;19(e1):e170–6. https://doi.org/10.1136/amiajnl-2011-000623.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Fu SS, van Ryn M, Sherman SE, Burgess DJ, Noorbaloochi S, Clothier B, et al. Proactive tobacco treatment and population-level cessation: a pragmatic randomized clinical trial. JAMA Intern Med. 2014;174(5):671–7. https://doi.org/10.1001/jamainternmed.2014.177.

    Article  PubMed  Google Scholar 

  84. Huang Y, Fried LF, Kyriakides TC, Johnson GR, Chiu S, McDonald L, et al. Automated safety event monitoring using electronic medical records in a clinical trial setting: Validation study using the VA NEPHRON-D trial. Clin Trials. 2019;16(1):81–9. https://doi.org/10.1177/1740774518813121.

    Article  PubMed  Google Scholar 

  85. Price D, Jones R, Pfister P, Cao H, Carter V, Kemppinen A, et al. Maximizing adherence and gaining new information for your chronic obstructive pulmonary disease (MAGNIFY COPD): study protocol for the pragmatic, cluster randomized trial evaluating the impact of dual bronchodilator with add-on sensor and electronic monitoring on clinical outcomes. Pragmat Obs Res. 2021;12:25–35. https://doi.org/10.2147/POR.S302809.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Goodman K, Krueger J, Crowley J. The automatic clinical trial: leveraging the electronic medical record in multisite cancer clinical trials. Curr Oncol Rep. 2012;14(6):502–8.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kumar S, Bharti AK, Amin R. Decentralized secure storage of medical records using Blockchain and IPFS: a comparative analysis with future directions. Secur Priv. 2021;4(5):e162. https://doi.org/10.1002/spy2.162.

    Article  Google Scholar 

  88. Borno HT, Bakke BM, Kaplan C, Hebig-Prophet A, Chao J, Kim Y-J, et al. A step towards equitable clinical trial recruitment: a protocol for the development and preliminary testing of an online prostate cancer health information and clinical trial matching tool. Pilot Feasibility Stud. 2019;5(1):123. https://doi.org/10.1186/s40814-019-0516-4.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Dinh-Le C, Chuang R, Chokshi S, Mann D. Wearable health technology and electronic health record integration: scoping review and future directions. JMIR Mhealth Uhealth. 2019;7(9):e12861. https://doi.org/10.2196/12861.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Ezekowitz.

Ethics declarations

Informed Consent Statement

No human studies were carried out by authors for this article.

Conflict of Interest

The authors declare no competing interests.

Additional information

Associate Editor Abhinav Sharma oversaw the review of this article

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gouda, P., Ezekowitz, J. Harnessing Electronic Medical Records in Cardiovascular Clinical Practice and Research. J. of Cardiovasc. Trans. Res. 16, 546–556 (2023). https://doi.org/10.1007/s12265-022-10313-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-022-10313-1

Keywords

Navigation