Skip to main content

Advertisement

Log in

Antioxidants Supplementation During Exercise: Friends or Enemies for Cardiovascular Homeostasis?

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Exercise is a preferred strategy for improving cardiac function, especially for patients with cardiovascular diseases. Increasing evidence indicates that oxidative stress is involved in exercise-induced cardioprotection, while the underlying mechanism remains unclear. Furthermore, the effect of antioxidant supplementation during or post-exercise still exists despite divergences. To explore the effect of oxidative stress and antioxidant supplementation on cardiovascular homeostasis during or post-exercise, we take insights into the progress of exercise-induced oxidative stress, antioxidant supplementation, and cardiovascular homeostasis. In particular, antioxidants such as vitamin C or E, gamma-oryzanol, and other natural antioxidants are discussed concerning regulating exercise-associated oxidative stress. Additionally, our present study reviewed and discussed a meta-analysis of antioxidant supplementation during exercise. Overall, we take an insight into the essential biological adaptations in response to exercise and the effects of antioxidant supplementation on cardiac function, which aid us in giving recommendations on antioxidant supplementation for exercisers and exercised people. A better understanding of these issues will broaden our knowledge of exercise physiology.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CVD:

Cardiovascular disease

ROS:

Reactive oxygen species

MI:

Myocardial infarction

EVs:

Extracellular vesicles

IRI:

Ischemia-reperfusion injury

Sirt 3:

Silent mating type information regulation 2 homolog 3

SOD2:

Superoxide dismutase 2

PGC-1α:

Peroxisome proliferator-activated receptor-γ coactlvator-1α

Nrf2:

Nuclear factor erythroid 2-related factor 2

miRNAs:

Micro-RNAs

PDE5:

CGMP‑specific phosphodiesterase type 5

Sir2:

SILENT information regulator 2

References

  1. Joseph P, Leong D, McKee M, Anand SS, Schwalm JD, Teo K, Mente A, Yusuf S. Reducing the global burden of cardiovascular disease, part 1: the epidemiology and Risk Factors. Circ Res. 2017;121(6):677–94. https://doi.org/10.1161/CIRCRESAHA.117.308903.

    Article  CAS  PubMed  Google Scholar 

  2. Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, Ahmed M, Aksut B, Alam T, Alam K, Alla F, Alvis-Guzman N, Amrock S, Ansari H, Arnlov J, Asayesh H, Atey TM, Avila-Burgos L, Awasthi A, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1–25. https://doi.org/10.1016/j.jacc.2017.04.052.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kroller-Schon S, Steven S, Kossmann S, Scholz A, Daub S, Oelze M, Xia N, Hausding M, Mikhed Y, Zinssius E, Mader M, Stamm P, Treiber N, Scharffetter-Kochanek K, Li H, Schulz E, Wenzel P, Munzel T, Daiber A. Molecular mechanisms of the crosstalk between mitochondria and NADPH oxidase through reactive oxygen species-studies in white blood cells and in animal models. Antioxid Redox Signal. 2014;20(2):247–66. https://doi.org/10.1089/ars.2012.4953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xue M, Joo YA, Li S, Niu C, Chen G, Yi X, Liang Y, Chen Z, Shen Y, Ye W, Cai L, Wang X, Jin L, Cong W. Metallothionein protects the heart against myocardial infarction via the mTORC2/FoxO3a/Bim pathway. Antioxid Redox Signal. 2019;31(5):403–19. https://doi.org/10.1089/ars.2018.7597.

    Article  CAS  PubMed  Google Scholar 

  5. He Y, Lu X, Chen T, Yang Y, Zheng J, Chen C, Zhang Y, Lei W. Resveratrol protects against myocardial ischemic injury via the inhibition of NFkappaBdependent inflammation and the enhancement of antioxidant defenses. Int J Mol Med. 2021;47(3):1. https://doi.org/10.3892/ijmm.2021.4862.

    Article  CAS  Google Scholar 

  6. Dey S, DeMazumder D, Sidor A, Foster DB, O’Rourke B. Mitochondrial ROS drive sudden cardiac death and chronic proteome remodeling in heart failure. Circ Res. 2018;123(3):356–71. https://doi.org/10.1161/CIRCRESAHA.118.312708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hussein EN, Hamed GM, Seif AA, Ahmed MA, Abu Zahra FAE. Effects of mesenchymal stem cells therapy on cardiovascular risk factors in experimental diabetic kidney disease. Can J Kidney Health Dis. 2020;7:2054358120957429. https://doi.org/10.1177/2054358120957429.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gao L, Wang L, Wei Y, Krishnamurthy P, Walcott GP, Menasche P, Zhang J. Exosomes secreted by hiPSC-derived cardiac cells improve recovery from myocardial infarction in swine. Sci Transl Med. 2020; 12(561). https://doi.org/10.1126/scitranslmed.aay1318.

  9. Gao J, Pan X, Li G, Chatterjee E, Xiao J. Physical exercise protects against endothelial dysfunction in cardiovascular and metabolic diseases. J Cardiovasc Transl Res. 2021; 1–17. https://doi.org/10.1007/s12265-021-10171-3.

  10. Powers SK, Quindry JC, Kavazis AN. Exercise-induced cardioprotection against myocardial ischemia-reperfusion injury. Free Radic Biol Med. 2008;44(2):193–201. https://doi.org/10.1016/j.freeradbiomed.2007.02.006.

    Article  CAS  PubMed  Google Scholar 

  11. Wang H, Xie Y, Guan L, Elkin K, Xiao J. Targets identified from exercised heart: killing multiple birds with one stone. NPJ Regen Med. 2021;6(1):23. https://doi.org/10.1038/s41536-021-00128-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guo S, Huang Y, Zhang Y, Huang H, Hong S, Liu T. Impacts of exercise interventions on different diseases and organ functions in mice. J Sport Health Sci. 2020;9(1):53–73. https://doi.org/10.1016/j.jshs.2019.07.004.

    Article  PubMed  Google Scholar 

  13. Moradi F, Imani AR, Faghihi M. Effects of regular exercise plus food restriction on left ventricular pathological remodeling in heart failureinduced rats. Bratisl Lek Listy. 2019;120(4):243–8. https://doi.org/10.4149/BLL_2019_044.

    Article  CAS  PubMed  Google Scholar 

  14. Xiao J, Rosenzweig A. Exercise and cardiovascular protection: Update and future. J Sport Health Sci. 2021;10(6):607–8. https://doi.org/10.1016/j.jshs.2021.11.001.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Liu X, Xiao J, Zhu H, Wei X, Platt C, Damilano F, Xiao C, Bezzerides V, Bostrom P, Che L, Zhang C, Spiegelman BM, Rosenzweig A. miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metab. 2015;21(4):584–95. https://doi.org/10.1016/j.cmet.2015.02.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang L, Wang J, Cretoiu D, Li G, Xiao J. Exercise-mediated regulation of autophagy in the cardiovascular system. J Sport Health Sci. 2020;9(3):203–10. https://doi.org/10.1016/j.jshs.2019.10.001.

    Article  PubMed  Google Scholar 

  17. Powers SK, Deminice R, Ozdemir M, Yoshihara T, Bomkamp MP, Hyatt H. Exercise-induced oxidative stress: Friend or foe? J Sport Health Sci. 2020;9(5):415–25. https://doi.org/10.1016/j.jshs.2020.04.001.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Contrepois K, Wu S, Moneghetti KJ, Hornburg D, Ahadi S, Tsai MS, Metwally AA, Wei E, Lee-McMullen B, Quijada JV, Chen S, Christle JW, Ellenberger M, Balliu B, Taylor S, Durrant MG, Knowles DA, Choudhry H, Ashland M, et al. Molecular choreography of acute exercise. Cell. 2020;181(5):1112-1130.e1116. https://doi.org/10.1016/j.cell.2020.04.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hen K, Bogdanski P, Szulinska M, Jablecka A, Pupek-Musialik D. Influence of regular physical activity on oxidative stress in women with simple obesity. Pol Merkur Lekarski. 2010;28(166):284–8.

    CAS  PubMed  Google Scholar 

  20. Yilmaz N, Erel O, Hazer M, Bagci C, Namiduru E, Gul E. Biochemical assessments of retinol, alpha-tocopherol, pyridoxal–5-phosphate oxidative stress index and total antioxidant status in adolescent professional basketball players and sedentary controls. Int J Adolesc Med Health. 2007;19(2):177–86. https://doi.org/10.1515/ijamh.2007.19.2.177.

    Article  PubMed  Google Scholar 

  21. Antonioni A, Fantini C, Dimauro I, Caporossi D. Redox homeostasis in sport: do athletes really need antioxidant support? Res Sports Med. 2019;27(2):147–65. https://doi.org/10.1080/15438627.2018.1563899.

    Article  PubMed  Google Scholar 

  22. Lopez AM, Padilla EL, Amaya HM, Ortega DR, Aguilar AJB, Navarro PE, de la Rosa FJB. Effect of post-training and post-match antioxidants on oxidative stress and inflammation in professional soccer players. Retos-Nuevas Tendencias En Educacion Fisica Deporte Y Recreacion. 2022;(43). https://doi.org/10.47197/retos.v43i0.90276.

  23. Avila-Escalante ML, Coop-Gamas F, Cervantes-Rodriguez M, Mendez-Iturbide D, Aranda G II. The effect of diet on oxidative stress and metabolic diseases-Clinically controlled trials. J Food Biochem. 2020;44(5):e13191. https://doi.org/10.1111/jfbc.13191.

    Article  PubMed  Google Scholar 

  24. Munzel T, Camici GG, Maack C, Bonetti NR, Fuster V, Kovacic JC. Impact of Oxidative Stress on the Heart and Vasculature: Part 2 of a 3-Part Series. J Am Coll Cardiol. 2017;70(2):212–29. https://doi.org/10.1016/j.jacc.2017.05.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Neri M, Fineschi V, Di Paolo M, Pomara C, Riezzo I, Turillazzi E, Cerretani D. Cardiac oxidative stress and inflammatory cytokines response after myocardial infarction. Curr Vasc Pharmacol. 2015;13(1):26–36. https://doi.org/10.2174/15701611113119990003.

    Article  CAS  PubMed  Google Scholar 

  26. Ji LL, Yeo D, Kang C, Zhang T. The role of mitochondria in redox signaling of muscle homeostasis. J Sport Health Sci. 2020;9(5):386–93. https://doi.org/10.1016/j.jshs.2020.01.001.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dikalova AE, Pandey A, Xiao L, Arslanbaeva L, Sidorova T, Lopez MG, Billings FT 4th, Verdin E, Auwerx J, Harrison DG, Dikalov SI. Mitochondrial Deacetylase Sirt3 reduces vascular dysfunction and hypertension while Sirt3 depletion in essential hypertension is linked to vascular inflammation and oxidative stress. Circ Res. 2020;126(4):439–52. https://doi.org/10.1161/CIRCRESAHA.119.315767.

    Article  CAS  PubMed  Google Scholar 

  28. Dikalov S, Itani H, Richmond B, Vergeade A, Rahman SMJ, Boutaud O, Blackwell T, Massion PP, Harrison DG, Dikalova A. Tobacco smoking induces cardiovascular mitochondrial oxidative stress, promotes endothelial dysfunction, and enhances hypertension. Am J Physiol Heart Circ Physiol. 2019;316(3):H639–46. https://doi.org/10.1152/ajpheart.00595.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Eid RA, Bin-Meferij MM, El-Kott AF, Eleawa SM, Zaki MSA, Al-Shraim M, El-Sayed F, Eldeen MA, Alkhateeb MA, Alharbi SA, Aldera H, Khalil MA. Exendin-4 protects against myocardial ischemia-reperfusion injury by upregulation of SIRT1 and SIRT3 and activation of AMPK. J Cardiovasc Transl Res. 2020. https://doi.org/10.1007/s12265-020-09984-5.

    Article  PubMed  Google Scholar 

  30. Vashi R, Patel BM. NRF2 in cardiovascular diseases: a ray of hope! J Cardiovasc Transl Res. 2021;14(3):573–86. https://doi.org/10.1007/s12265-020-10083-8.

    Article  PubMed  Google Scholar 

  31. Farooqui Z, Mohammad RS, Lokhandwala MF, Banday AA. Nrf2 inhibition induces oxidative stress, renal inflammation and hypertension in mice. Clin Exp Hypertens. 2021;43(2):175–80. https://doi.org/10.1080/10641963.2020.1836191.

    Article  CAS  PubMed  Google Scholar 

  32. Li B, Li Y, Hu L, Liu Y, Zhou Q, Wang M, An Y, Li P. Role of Circular RNAs in the Pathogenesis of Cardiovascular Disease. J Cardiovasc Transl Res. 2020;13(4):572–83. https://doi.org/10.1007/s12265-019-09912-2.

    Article  PubMed  Google Scholar 

  33. Liu Q, Chen L, Liang X, Cao Y, Zhu X, Wang S, Li J, Gao J, Xiao J. Exercise attenuates angiotensinII-induced muscle atrophy by targeting PPARγ/miR-29b. J Sport Health Sci. 2021. https://doi.org/10.1016/j.jshs.2021.06.002.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Torma F, Gombos Z, Jokai M, Berkes I, Takeda M, Mimura T, Radak Z, Gyori F. The roles of microRNA in redox metabolism and exercise-mediated adaptation. J Sport Health Sci. 2020;9(5):405–14. https://doi.org/10.1016/j.jshs.2020.03.004.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu QQ, Ren K, Liu SH, Li WM, Huang CJ, Yang XH. MicroRNA-140-5p aggravates hypertension and oxidative stress of atherosclerosis via targeting Nrf2 and Sirt2. Int J Mol Med. 2019;43(2):839–49. https://doi.org/10.3892/ijmm.2018.3996.

    Article  CAS  PubMed  Google Scholar 

  36. Wang X, Bai M. CircTM7SF3 contributes to oxidized low-density lipoprotein-induced apoptosis, inflammation and oxidative stress through targeting miR-206/ASPH axis in atherosclerosis cell model in vitro. BMC Cardiovasc Disord. 2021;21(1):51. https://doi.org/10.1186/s12872-020-01800-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Saiyin T, Engineer A, Greco ER, Kim MY, Lu X, Jones DL, Feng Q. Maternal voluntary exercise mitigates oxidative stress and incidence of congenital heart defects in pre-gestational diabetes. J Cell Mol Med. 2019;23(8):5553–65. https://doi.org/10.1111/jcmm.14439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Marin DP, Bolin AP, Campoio TR, Guerra BA, Otton R. Oxidative stress and antioxidant status response of handball athletes: implications for sport training monitoring. Int Immunopharmacol. 2013;17(2):462–70. https://doi.org/10.1016/j.intimp.2013.07.009.

    Article  CAS  PubMed  Google Scholar 

  39. Pal S, Chaki B, Chattopadhyay S, Bandyopadhyay A. High-intensity exercise induced oxidative stress and skeletal muscle damage in postpubertal boys and girls: a comparative study. J Strength Cond Res. 2018;32(4):1045–52. https://doi.org/10.1519/JSC.0000000000002167.

    Article  PubMed  Google Scholar 

  40. Kanter M, Aksu F, Takir M, Kostek O, Kanter B, Oymagil A. Effects of low intensity exercise against apoptosis and oxidative stress in streptozotocin-induced diabetic rat heart. Exp Clin Endocrinol Diabetes. 2017;125(9):583–91. https://doi.org/10.1055/s-0035-1569332.

    Article  CAS  PubMed  Google Scholar 

  41. Mi C, Qin X, Hou Z, Gao F. Moderate-intensity exercise allows enhanced protection against oxidative stress-induced cardiac dysfunction in spontaneously hypertensive rats. Braz J Med Biol Res. 2019;52(6):e8009. https://doi.org/10.1590/1414-431X20198009.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Thirupathi A, Pinho RA, Chang YZ. Physical exercise: An inducer of positive oxidative stress in skeletal muscle aging. Life Sci. 2020;252:117630. https://doi.org/10.1016/j.lfs.2020.117630.

    Article  CAS  PubMed  Google Scholar 

  43. Prokic V, Plecevic S, Bradic J, Petkovic A, Srejovic I, Bolevich S, Jeremic J, Bolevich S, Jakovljevic V, Zivkovic V. The impact of nine weeks swimming exercise on heart function in hypertensive and normotensive rats: role of cardiac oxidative stress. J Sports Med Phys Fitness. 2019;59(12):2075–83. https://doi.org/10.23736/S0022-4707.19.09798-6.

    Article  CAS  PubMed  Google Scholar 

  44. Chang P, Zhang X, Zhang M, Li G, Hu L, Zhao H, Zhu X, Wu J, Wang X, Wang K, Zhang J, Ren M, Chen B, Zhu X, Zhu M, Yu J. Swimming exercise inhibits myocardial ER stress in the hearts of aged mice by enhancing cGMPPKG signaling. Mol Med Rep. 2020;21(2):549–56. https://doi.org/10.3892/mmr.2019.10864.

    Article  PubMed  Google Scholar 

  45. Quintanilha AT, Packer L. Vitamin E, physical exercise and tissue oxidative damage. Ciba Found Symp. 1983;101:56–69. https://doi.org/10.1002/9780470720820.ch5.

    Article  CAS  PubMed  Google Scholar 

  46. French JP, Hamilton KL, Quindry JC, Lee Y, Upchurch PA, Powers SK. Exercise-induced protection against myocardial apoptosis and necrosis: MnSOD, calcium-handling proteins, and calpain. FASEB J. 2008;22(8):2862–71. https://doi.org/10.1096/fj.07-102541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yamashita N, Hoshida S, Otsu K, Asahi M, Kuzuya T, Hori M. Exercise provides direct biphasic cardioprotection via manganese superoxide dismutase activation. J Exp Med. 1999;189(11):1699–706. https://doi.org/10.1084/jem.189.11.1699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jarrete AP, Novais IP, Nunes HA, Puga GM, Delbin MA, Zanesco A. Influence of aerobic exercise training on cardiovascular and endocrine-inflammatory biomarkers in hypertensive postmenopausal women. J Clin Transl Endocrinol. 2014;1(3):108–14. https://doi.org/10.1016/j.jcte.2014.07.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Done AJ, Newell MJ, Traustadottir T. Effect of exercise intensity on Nrf2 signalling in young men. Free Radic Res. 2017;51(6):646–55. https://doi.org/10.1080/10715762.2017.1353689.

    Article  CAS  PubMed  Google Scholar 

  50. Ostrom EL, Traustadottir T. Aerobic exercise training partially reverses the impairment of Nrf2 activation in older humans. Free Radic Biol Med. 2020;160:418–32. https://doi.org/10.1016/j.freeradbiomed.2020.08.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shanmugam G, Challa AK, Devarajan A, Athmanathan B, Litovsky SH, Krishnamurthy P, Davidson CJ, Rajasekaran NS. Exercise mediated Nrf2 signaling protects the myocardium from isoproterenol-induced pathological remodeling. Front Cardiovasc Med. 2019;6:68. https://doi.org/10.3389/fcvm.2019.00068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wen DT, Zheng L, Li JX, Lu K, Hou WQ. The activation of cardiac dSir2-related pathways mediates physical exercise resistance to heart aging in old Drosophila. Aging (Albany NY). 2019;11(17):7274–93. https://doi.org/10.18632/aging.102261.

    Article  CAS  PubMed  Google Scholar 

  53. Duthie GG, Robertson JD, Maughan RJ, Morrice PC. Blood antioxidant status and erythrocyte lipid peroxidation following distance running. Arch Biochem Biophys. 1990;282(1):78–83. https://doi.org/10.1016/0003-9861(90)90089-h.

    Article  CAS  PubMed  Google Scholar 

  54. Kon M, Tanabe K, Akimoto T, Kimura F, Tanimura Y, Shimizu K, Okamoto T, Kono I. Reducing exercise-induced muscular injury in kendo athletes with supplementation of coenzyme Q10. Br J Nutr. 2008;100(4):903–9. https://doi.org/10.1017/S0007114508926544.

    Article  CAS  PubMed  Google Scholar 

  55. De la Fuente M, Sanchez C, Vallejo C, Diaz-Del Cerro E, Arnalich F, Hernanz A. Vitamin C and vitamin C plus E improve the immune function in the elderly. Exp Gerontol. 2020;142:111118. https://doi.org/10.1016/j.exger.2020.111118.

    Article  CAS  PubMed  Google Scholar 

  56. Scalzo RL, Bauer TA, Harrall K, Moreau K, Ozemek C, Herlache L, McMillin S, Huebschmann AG, Dorosz J, Reusch JEB, Regensteiner JG. Acute vitamin C improves cardiac function, not exercise capacity, in adults with type 2 diabetes. Diabetol Metab Syndr. 2018;10:7. https://doi.org/10.1186/s13098-018-0306-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chou CC, Sung YC, Davison G, Chen CY, Liao YH. Short-term high-dose vitamin C and E supplementation attenuates muscle damage and inflammatory responses to repeated taekwondo competitions: a randomized placebo-controlled trial. Int J Med Sci. 2018;15(11):1217–26. https://doi.org/10.7150/ijms.26340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Naziroglu M, Kilinc F, Uguz AC, Celik O, Bal R, Butterworth PJ, Baydar ML. Oral vitamin C and E combination modulates blood lipid peroxidation and antioxidant vitamin levels in maximal exercising basketball players. Cell Biochem Funct. 2010;28(4):300–5. https://doi.org/10.1002/cbf.1657.

    Article  CAS  PubMed  Google Scholar 

  59. Takahashi M, Miyashita M, Park JH, Kawanishi N, Bae SR, Nakamura Y, Sakamoto S, Suzuki K. Low-volume exercise training and vitamin E supplementation attenuates oxidative stress in postmenopausal women. J Nutr Sci Vitaminol (Tokyo). 2013;59(5):375–83. https://doi.org/10.3177/jnsv.59.375.

    Article  CAS  PubMed  Google Scholar 

  60. Stunes AK, Syversen U, Berntsen S, Paulsen G, Stea TH, Hetlelid KJ, Lohne-Seiler H, Mosti MP, Bjornsen T, Raastad T, Haugeberg G. High doses of vitamin C plus E reduce strength training-induced improvements in areal bone mineral density in elderly men. Eur J Appl Physiol. 2017;117(6):1073–84. https://doi.org/10.1007/s00421-017-3588-y.

    Article  CAS  PubMed  Google Scholar 

  61. Bjornsen T, Salvesen S, Berntsen S, Hetlelid KJ, Stea TH, Lohne-Seiler H, Rohde G, Haraldstad K, Raastad T, Kopp U, Haugeberg G, Mansoor MA, Bastani NE, Blomhoff R, Stolevik SB, Seynnes OR, Paulsen G. Vitamin C and E supplementation blunts increases in total lean body mass in elderly men after strength training. Scand J Med Sci Sports. 2016;26(7):755–63. https://doi.org/10.1111/sms.12506.

    Article  CAS  PubMed  Google Scholar 

  62. Bailey DM, Williams C, Betts JA, Thompson D, Hurst TL. Oxidative stress, inflammation and recovery of muscle function after damaging exercise: effect of 6-week mixed antioxidant supplementation. Eur J Appl Physiol. 2011;111(6):925–36. https://doi.org/10.1007/s00421-010-1718-x.

    Article  CAS  PubMed  Google Scholar 

  63. Cumming KT, Raastad T, Holden G, Bastani NE, Schneeberger D, Paronetto MP, Mercatelli N, Ostgaard HN, Ugelstad I, Caporossi D, Blomhoff R, Paulsen G. Effects of vitamin C and E supplementation on endogenous antioxidant systems and heat shock proteins in response to endurance training. Physiol Rep. 2014; 2(10). https://doi.org/10.14814/phy2.12142.

  64. Bryant RJ, Ryder J, Martino P, Kim J, Craig BW. Effects of vitamin E and C supplementation either alone or in combination on exercise-induced lipid peroxidation in trained cyclists. J Strength Cond Res. 2003;17(4):792–800. https://doi.org/10.1519/1533-4287(2003)017%3c0792:eoveac%3e2.0.co;2.

    Article  PubMed  Google Scholar 

  65. Clifford T, Jeffries O, Stevenson EJ, Davies KAB. The effects of vitamin C and E on exercise-induced physiological adaptations: a systematic review and Meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2020;60(21):3669–79. https://doi.org/10.1080/10408398.2019.1703642.

    Article  CAS  PubMed  Google Scholar 

  66. Wyckelsma VL, Venckunas T, Brazaitis M, Gastaldello S, Snieckus A, Eimantas N, Baranauskiene N, Subocius A, Skurvydas A, Paasuke M, Gapeyeva H, Kaasik P, Paasuke R, Jurimae J, Graf BA, Kayser B, Place N, Andersson DC, Kamandulis S et al. Vitamin C and E treatment blunts sprint interval training-induced changes in inflammatory mediator-, calcium-, and mitochondria-related signaling in recreationally active elderly humans. Antioxidants (Basel). 2020; 9(9). https://doi.org/10.3390/antiox9090879.

  67. Wawrzyniak-Gramacka E, Hertmanowska N, Tylutka A, Morawin B, Wacka E, Gutowicz M, Zembron-Lacny A. The association of anti-inflammatory diet ingredients and lifestyle exercise with inflammaging. Nutrients. 2021; 13(11). https://doi.org/10.3390/nu13113696.

  68. Xu Z, Godber JS. Purification and identification of components of gamma-oryzanol in rice bran Oil. J Agric Food Chem. 1999;47(7):2724–8. https://doi.org/10.1021/jf981175j.

    Article  CAS  PubMed  Google Scholar 

  69. Xu Z, Hua N, Godber JS. Antioxidant activity of tocopherols, tocotrienols, and gamma-oryzanol components from rice bran against cholesterol oxidation accelerated by 2,2’-azobis(2-methylpropionamidine) dihydrochloride. J Agric Food Chem. 2001;49(4):2077–81. https://doi.org/10.1021/jf0012852.

    Article  CAS  PubMed  Google Scholar 

  70. Francisqueti-Ferron FV, Ferron AJT, Altomare A, Garcia JL, Moreto F, Ferreira ALA, Minatel IO, Aldini G, Correa CR. Gamma-oryzanol reduces renal inflammation and oxidative stress by modulating AGEs/RAGE axis in animals submitted to high sugar-fat diet. J Bras Nefrol. 2021;43(4):460–9. https://doi.org/10.1590/2175-8239-JBN-2021-0002.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Shin SY, Kim HW, Jang HH, Hwang YJ, Choe JS, Lim Y, Kim JB, Lee YH. Gamma-oryzanol-rich black rice bran extract enhances the innate immune response. J Med Food. 2017;20(9):855–63. https://doi.org/10.1089/jmf.2017.3966.

    Article  CAS  PubMed  Google Scholar 

  72. Huang L, Jiang W, Zhu L, Ma C, Ou Z, Luo C, Wu J, Wen L, Tan Z, Yi J. gamma-Oryzanol suppresses cell apoptosis by inhibiting reactive oxygen species-mediated mitochondrial signaling pathway in H2O2-stimulated L02 cells. Biomed Pharmacother. 2020;121:109554. https://doi.org/10.1016/j.biopha.2019.109554.

    Article  CAS  PubMed  Google Scholar 

  73. Karupaiah T, Aik CK, Heen TC, Subramaniam S, Bhuiyan AR, Fasahat P, Zain AM, Ratnam W. A transgressive brown rice mediates favourable glycaemic and insulin responses. J Sci Food Agric. 2011;91(11):1951–6. https://doi.org/10.1002/jsfa.4395.

    Article  CAS  PubMed  Google Scholar 

  74. Sun Q, Spiegelman D, van Dam RM, Holmes MD, Malik VS, Willett WC, Hu FB. White rice, brown rice, and risk of type 2 diabetes in US men and women. Arch Intern Med. 2010;170(11):961–9. https://doi.org/10.1001/archinternmed.2010.109.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ahn J, Son HJ, Seo HD, Ha TY, Ahn J, Lee H, Shin SH, Jung CH, Jang YJ. Gamma-oryzanol improves exercise endurance and muscle strength by upregulating PPARdelta and ERRgamma activity in aged mice. Mol Nutr Food Res. 2021;65(14):e2000652. https://doi.org/10.1002/mnfr.202000652.

    Article  CAS  PubMed  Google Scholar 

  76. Ostaszewski P, Kowalska A, Szarska E, Szpotanski P, Cywinska A, Balasnska B, Sadkowski T. Effects of beta-Hydroxy-beta-methylbutyrate and gamma-oryzanol on blood biochemical markers in exercising thoroughbred race horses. J Equine Vet. 2012;32(9):542–51. https://doi.org/10.1016/j.jevs.2012.01.002.

    Article  Google Scholar 

  77. Ahn J, Son HJ, Seo HD, Ha TY, Ahn J, Lee H, Shin SH, Jung CH, Jang YJ. gamma-Oryzanol improves exercise endurance and muscle strength by upregulating PPARdelta and ERRgamma activity in aged mice. Mol Nutr Food Res. 2021; e2000652. https://doi.org/10.1002/mnfr.202000652.

  78. Dahleh MMM, Araujo SM, Bortolotto VC, Pinheiro FC, Poetini MR, Musachio EAS, Meichtry LB, Couto SF, Prigol M. Exercise associated with gamma-oryzanol supplementation suppresses oxidative stress and prevents changes in locomotion in Drosophila melanogaster. Free Radic Res. 2021;1–32. https://doi.org/10.1080/10715762.2021.1895992.

  79. Eslami S, Esa NM, Marandi SM, Ghasemi G, Eslami S. Effects of gamma oryzanol supplementation on anthropometric measurements & muscular strength in healthy males following chronic resistance training. Indian J Med Res. 2014;139(6):857–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Bowtell JL, Sumners DP, Dyer A, Fox P, Mileva KN. Montmorency cherry juice reduces muscle damage caused by intensive strength exercise. Med Sci Sports Exerc. 2011;43(8):1544–51. https://doi.org/10.1249/MSS.0b013e31820e5adc.

    Article  CAS  PubMed  Google Scholar 

  81. Brown MA, Stevenson EJ, Howatson G. Montmorency tart cherry (Prunus cerasus L.) supplementation accelerates recovery from exercise-induced muscle damage in females. Eur J Sport Sci. 2019;19(1):95–102. https://doi.org/10.1080/17461391.2018.1502360.

    Article  PubMed  Google Scholar 

  82. Johnson SA, Navaei N, Pourafshar S, Jaime SJ, Akhavan NS, Alvarez-Alvarado S, Proano GV, Litwin NS, Clark EA, Foley EM, George KS, Elam ML, Payton ME, Arjmandi BH, Figueroa A. Effects of montmorency tart cherry juice consumption on cardiometabolic biomarkers in adults with metabolic syndrome: a randomized controlled pilot trial. J Med Food. 2020;23(12):1238–47. https://doi.org/10.1089/jmf.2019.0240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kim YJ, Yoo SR, Chae CK, Jung UJ, Choi MS. Omija fruit extract improves endurance and energy metabolism by upregulating PGC-1alpha expression in the skeletal muscle of exercised rats. J Med Food. 2014;17(1):28–35. https://doi.org/10.1089/jmf.2013.3071.

    Article  CAS  PubMed  Google Scholar 

  84. Goldfarb AH, Garten RS, Cho C, Chee PD, Chambers LA. Effects of a fruit/berry/vegetable supplement on muscle function and oxidative stress. Med Sci Sports Exerc. 2011;43(3):501–8. https://doi.org/10.1249/MSS.0b013e3181f1ef48.

    Article  CAS  PubMed  Google Scholar 

  85. Desai T, Bottoms L, Roberts M. The effects of Montmorency tart cherry juice supplementation and FATMAX exercise on fat oxidation rates and cardio-metabolic markers in healthy humans. Eur J Appl Physiol. 2018;118(12):2523–39. https://doi.org/10.1007/s00421-018-3978-9.

    Article  CAS  PubMed  Google Scholar 

  86. Lamb KL, Ranchordas MK, Johnson E, Denning J, Downing F, Lynn A. No effect of tart cherry juice or pomegranate juice on recovery from exercise-induced muscle damage in non-resistance trained men. Nutrients. 2019; 11(7). https://doi.org/10.3390/nu11071593.

  87. Pastor R, Tur JA. Response to exercise in older adults who take supplements of antioxidants and/or omega-3 polyunsaturated fatty acids: A systematic review. Biochem Pharmacol. 2020;173:113649. https://doi.org/10.1016/j.bcp.2019.113649.

    Article  CAS  PubMed  Google Scholar 

  88. Garcia-Flores LA, Medina S, Gomez C, Wheelock CE, Cejuela R, Martinez-Sanz JM, Oger C, Galano JM, Durand T, Hernandez-Saez A, Ferreres F, Gil-Izquierdo A. Aronia-citrus juice (polyphenol-rich juice) intake and elite triathlon training: a lipidomic approach using representative oxylipins in urine. Food Funct. 2018;9(1):463–75. https://doi.org/10.1039/c7fo01409k.

    Article  CAS  PubMed  Google Scholar 

  89. Martinez-Noguera FJ, Marin-Pagan C, Carlos-Vivas J, Alcaraz PE. 8-week supplementation of 2S-hesperidin modulates antioxidant and inflammatory status after exercise until exhaustion in amateur cyclists. Antioxidants (Basel). 2021; 10(3). https://doi.org/10.3390/antiox10030432.

  90. Ocktariyana, Wahyuni S. Role of natural antioxidant after exercise in reducing malondialdehyde (MDA) levels during pregnancy. J Pak Med Assoc. 2021;71(Suppl 2 2):S14–7.

    Google Scholar 

  91. Carrera-Quintanar L, Funes L, Herranz-Lopez M, Martinez-Peinado P, Pascual-Garcia S, Sempere JM, Boix-Castejon M, Cordova A, Pons A, Micol V, Roche E. Antioxidant supplementation modulates neutrophil inflammatory response to exercise-induced stress. Antioxidants (Basel). 2020; 9(12). https://doi.org/10.3390/antiox9121242.

  92. Baskin CR, Hinchcliff KW, DiSilvestro RA, Reinhart GA, Hayek MG, Chew BP, Burr JR, Swenson RA. Effects of dietary antioxidant supplementation on oxidative damage and resistance to oxidative damage during prolonged exercise in sled dogs. Am J Vet Res. 2000;61(8):886–91. https://doi.org/10.2460/ajvr.2000.61.886.

    Article  CAS  PubMed  Google Scholar 

  93. Nabuco HCG, Tomeleri CM, Fernandes RR, Sugihara Junior P, Venturini D, Barbosa DS, Deminice R, Sardinha LB, Cyrino ES. Effects of pre- or post-exercise whey protein supplementation on oxidative stress and antioxidant enzymes in older women. Scand J Med Sci Sports. 2019;29(8):1101–8. https://doi.org/10.1111/sms.13449.

    Article  PubMed  Google Scholar 

  94. Ye Y, Li J, Yuan Z. Effect of antioxidant vitamin supplementation on cardiovascular outcomes: a meta-analysis of randomized controlled trials. PLoS ONE. 2013;8(2):e56803. https://doi.org/10.1371/journal.pone.0056803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Xu Y, Liang M, Ugbolue UC, Fekete G, Gu Y. Effect of physical exercise under different intensity and antioxidative supplementation for plasma superoxide dismutase in healthy adults: systematic review and network meta-analysis. Front Physiol. 2022;13:707176. https://doi.org/10.3389/fphys.2022.707176.

    Article  PubMed  PubMed Central  Google Scholar 

  96. de Oliveira DCX, Rosa FT, Simoes-Ambrosio L, Jordao AA, Deminice R. Antioxidant vitamin supplementation prevents oxidative stress but does not enhance performance in young football athletes. Nutrition. 2019;63–64:29–35. https://doi.org/10.1016/j.nut.2019.01.007.

    Article  CAS  PubMed  Google Scholar 

  97. Stankiewicz B, Cieslicka M, Kujawski S, Piskorska E, Kowalik T, Korycka J, Skarpanska-Stejnborn A. Effects of antioxidant supplementation on oxidative stress balance in young footballers- a randomized double-blind trial. J Int Soc Sports Nutr. 2021;18(1):44. https://doi.org/10.1186/s12970-021-00447-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lowings S, Shannon OM, Deighton K, Matu J, Barlow MJ. Effect of dietary nitrate supplementation on swimming performance in trained swimmers. Int J Sport Nutr Exerc Metab. 2017;27(4):377–84. https://doi.org/10.1123/ijsnem.2016-0251.

    Article  CAS  PubMed  Google Scholar 

  99. Roberts JD, Willmott AGB, Beasley L, Boal M, Davies R, Martin L, Chichger H, Gautam L, Del Coso J. The Impact of decaffeinated green tea extract on fat oxidation, body composition and cardio-metabolic health in overweight, Recreationally Active Individuals. Nutrients. 2021; 13(3). https://doi.org/10.3390/nu13030764.

  100. Doma K, Gahreman D, Connor J. Fruit supplementation reduces indices of exercise-induced muscle damage: a systematic review and meta-analysis. Eur J Sport Sci. 2021;21(4):562–79. https://doi.org/10.1080/17461391.2020.1775895.

    Article  PubMed  Google Scholar 

  101. Hill JA, Keane KM, Quinlan R, Howatson G. Tart cherry supplementation and recovery from strenuous exercise: a systematic review and meta-analysis. Int J Sport Nutr Exerc Metab. 2021;31(2):154–67. https://doi.org/10.1123/ijsnem.2020-0145.

    Article  PubMed  Google Scholar 

  102. Gao R, Chilibeck PD. Effect of tart cherry concentrate on endurance exercise performance: a meta-analysis. J Am Coll Nutr. 2020;39(7):657–64. https://doi.org/10.1080/07315724.2020.1713246.

    Article  CAS  PubMed  Google Scholar 

  103. Righi NC, Schuch FB, De Nardi AT, Pippi CM, de Almeida Righi G, Puntel GO, da Silva AMV, Signori LU. Effects of vitamin C on oxidative stress, inflammation, muscle soreness, and strength following acute exercise: meta-analyses of randomized clinical trials. Eur J Nutr. 2020;59(7):2827–39. https://doi.org/10.1007/s00394-020-02215-2.

    Article  CAS  PubMed  Google Scholar 

  104. Tofas T, Fatouros IG, Draganidis D, Deli CK, Chatzinikolaou A, Tziortzis C, Panayiotou G, Koutedakis Y, Jamurtas AZ. Effects of cardiovascular, resistance and combined exercise training on cardiovascular, performance and blood redox parameters in coronary artery disease patients: an 8-month training-detraining randomized intervention. Antioxidants (Basel). 2021; 10(3). https://doi.org/10.3390/antiox10030409.

  105. Zarei S, Taghian F, Sharifi G, Abedi H. Novel prevention insights into depletion of oxidative stress status through regular exercise and grape seed effective substance in heart ischemia rat model. Food Sci Nutr. 2022;10(3):833–45. https://doi.org/10.1002/fsn3.2714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ortiz-Franco M, Planells E, Quintero B, Acuna-Castroviejo D, Rusanova I, Escames G, Molina-Lopez J. Effect of melatonin supplementation on antioxidant status and DNA damage in high intensity trained athletes. Int J Sports Med. 2017;38(14):1117–25. https://doi.org/10.1055/s-0043-119881.

    Article  CAS  PubMed  Google Scholar 

  107. Michaelides AP, Soulis D, Antoniades C, Antonopoulos AS, Miliou A, Ioakeimidis N, Chatzistamatiou E, Bakogiannis C, Marinou K, Liakos C, Stefanadis C. Exercise duration as a determinant of vascular function and antioxidant balance in patients with coronary artery disease. Heart. 2011;97(10):832–7. https://doi.org/10.1136/hrt.2010.209080.

    Article  CAS  PubMed  Google Scholar 

  108. Galan AI, Palacios E, Ruiz F, Diez A, Arji M, Almar M, Moreno C, Calvo JI, Munoz ME, Delgado MA, Jimenez R. Exercise, oxidative stress and risk of cardiovascular disease in the elderly. Protective role of antioxidant functional foods. Biofactors. 2006;27(1–4):167–83. https://doi.org/10.1002/biof.5520270115.

    Article  CAS  PubMed  Google Scholar 

  109. Matsumoto A, Mason SR, Flatscher-Bader T, Ward LC, Marsh SA, Wilce PA, Fassett RG, de Haan JB, Coombes JS. Effects of exercise and antioxidant supplementation on endothelial gene expression. Int J Cardiol. 2012;158(1):59–65. https://doi.org/10.1016/j.ijcard.2010.12.104.

    Article  PubMed  Google Scholar 

  110. Li Y, Zafar S, Salih Ibrahim RM, Chi HL, Xiao T, Xia WJ, Li HB, Kang YM. Exercise and food supplement of vitamin C ameliorate hypertension through improvement of gut microflora in the spontaneously hypertensive rats. Life Sci. 2021;269:119097. https://doi.org/10.1016/j.lfs.2021.119097.

    Article  CAS  PubMed  Google Scholar 

  111. Stabler SP, Sekhar J, Allen RH, O’Neill HC, White CW. Alpha-lipoic acid induces elevated S-adenosylhomocysteine and depletes S-adenosylmethionine. Free Radical Biol Med. 2009;47(8):1147–53. https://doi.org/10.1016/j.freeradbiomed.2009.07.019.

    Article  CAS  Google Scholar 

  112. McNeilly AM, Davison GW, Murphy MH, Nadeem N, Trinick T, Duly E, Novials A, McEneny J. Effect of alpha-lipoic acid and exercise training on cardiovascular disease risk in obesity with impaired glucose tolerance. Lipids Health Dis. 2011;10:217. https://doi.org/10.1186/1476-511X-10-217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Donato AJ, Uberoi A, Bailey DM, Wray DW, Richardson RS. Exercise-induced brachial artery vasodilation: effects of antioxidants and exercise training in elderly men. Am J Physiol Heart Circ Physiol. 2010;298(2):H671-678. https://doi.org/10.1152/ajpheart.00761.2009.

    Article  CAS  PubMed  Google Scholar 

  114. Emami A, Tofighi A, Asri-Rezaei S, Bazargani-Gilani B. The effect of short-term coenzyme Q10 supplementation and pre-cooling strategy on cardiac damage markers in elite swimmers. Br J Nutr. 2018;119(4):381–90. https://doi.org/10.1017/S0007114517003774.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the grants from the National Key Research and Development Project (2018YFE0113500 to JJ Xiao), the National Natural Science Foundation of China (82020108002, and 81911540486 to JJ Xiao, 82000253 to HY Wang), the grant from Science and Technology Commission of Shanghai Municipality (20DZ2255400 and 21XD1421300 to JJ Xiao), the “Dawn” Program of Shanghai Education Commission (19SG34 to JJ Xiao), the Sailing Program from Science and Technology Commission of Shanghai (20YF1414000 to HY Wang), “Chenguang Program” of Shanghai Education Development Foundation, and Shanghai Municipal Education Commission (20CG46 to HY Wang).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Xiao.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Editor-in-Chief Enrique Lara-Pezzi oversaw the review of this article

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Yang, Z., Zhang, X. et al. Antioxidants Supplementation During Exercise: Friends or Enemies for Cardiovascular Homeostasis?. J. of Cardiovasc. Trans. Res. 16, 51–62 (2023). https://doi.org/10.1007/s12265-022-10297-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-022-10297-y

Keywords

Navigation