Skip to main content
Log in

Morphology Optimization of Leaflet for Surgical Reconstruction of the Aortic Valve: In Vitro Test and Simulation-Based DOE Study

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

This study was to evaluate the impact of leaflet trimming strategy on the hemodynamic behaviors of the aortic valve after reconstructive surgery, and give recommendations based on design of experiment (DOE) and in vitro studies. An in vitro hemodynamic test was performed on the simulated surgical model to quantify the efficacy of conventional reconstructive surgery. The very same computational model was built and verified, on which the full factorial DOE was carried out to summarize the correlations between leaflet trimming parameters and valve hemodynamic characteristics. Hemodynamic characteristics of the valve substitute were significantly associated with leaflet trimming parameters. The total regurgitant and transvalvular regurgitant of the valve substitute were reduced by 27.44% and 13.61% after optimization of the leaflet design. Synthetic use of in vitro tests and DOE study based on computational models helped improve outcomes of the reconstruction of aortic valve by reducing free edge length and increasing commissure height and leaflet height.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

FSI:

Fluid structure interaction

DOE:

Design of experiments

CO:

Cardiac outputs

EOA:

Effective orifice area

References

  1. Domenech, B., Pomar, J. L., Prat-González, S., Vidal, B., López-Soto, A., Castella, M., & Sitges, M. (2016). Valvular heart disease epidemics. The Journal of Heart Valve Disease, 25, 1–7.

    PubMed  Google Scholar 

  2. Benjamin, E. J., Blaha, M. J., Chiuve, S. E., et al. (2017). Heart disease and stroke statistics-2017 update: a report from the American heart association. Circulation, 135, e146–e603.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Eveborn, G. W., Schirmer, H., Heggelund, G., Lunde, P., & Rasmussen, K. (2013). The evolving epidemiology of valvular aortic stenosis. The Tromsø Study Heart, 99, 396.

    PubMed  Google Scholar 

  4. Carabello, B. A. (2013). Introduction to aortic stenosis. Circulation Research, 113, 179–185.

    Article  CAS  PubMed  Google Scholar 

  5. Duran, C. M., Gometza, B., Kumar, N., Gallo, R., & Martin-Duran, R. (1995). Aortic valve replacement with freehand autologous pericardium. J Thorac Cardiovasc Surg, 110(2), 511–6.

    Article  CAS  PubMed  Google Scholar 

  6. Duran, C. M., Gallo, B. R., & Kumar, N. (1995). Aortic valve replacement with autologous pericardium: surgical technique. J Card Surg, 10, 1–9.

    Article  CAS  PubMed  Google Scholar 

  7. Ozaki, S., Kawase, I., Yamashita, H., Uchida, S., Nozawa, Y., Takatoh, M., & Hagiwara, S. (2014). A total of 404 cases of aortic valve reconstruction with glutaraldehyde-treated autologous pericardium. The Journal of Thoracic and Cardiovascular Surgery, 147, 301–306.

    Article  PubMed  Google Scholar 

  8. Ozaki, S., Kawase, I., Yamashita, H., Uchida, S., Takatoh, M., Hagiwara, S., & Kiyohara, N. (2015). Aortic valve reconstruction using autologous pericardium for aortic stenosis. Circulation Journal., 79, 1504–1510.

    Article  PubMed  Google Scholar 

  9. Ozaki, S., Kawase, I., Yamashita, H., Uchida, S., Takatoh, M., & Kiyohara, N. (2018). Midterm outcomes after aortic valve neocuspidization with glutaraldehyde-treated autologous pericardium. The Journal of Thoracic and Cardiovascular Surgery., 155, 2379–2387.

    Article  PubMed  Google Scholar 

  10. Yaping, S., Bing, J., Huifeng, Z., Ming, Y., & Hua, S. (2017). Surgical repair of aortic stenosis by using autologous pericardium in pediatric population: a report of 9 cases. Chin J Evid Based Pediatr., 12, 268–272.

    Google Scholar 

  11. Wang, K., Zhang, H., & Jia, B. (2018). Current surgical strategies and techniques of aortic valve diseases in children. Translational Pediatrics., 7(2), 83.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yong, F., Yuqi, C., Wenshuo, W., Huifeng, Z., Lai, W., Bin, J., & Shengzhang, W. (2020). Computational modeling for surgical reconstruction of aortic valve by using autologous pericardium. IEEE Access., 8, 97343–97352.

    Article  Google Scholar 

  13. Miyazaki, T., Yamagishi, M., Maeda, Y., Taniguchi, S., Fujita, S., Hongu, H., & Yaku, H. (2018). Long-term outcomes of expanded polytetrafluoroethylene conduits with bulging sinuses and a fan-shaped valve in right ventricular outflow tract reconstruction. The Journal of Thoracic and Cardiovascular Surgery., 155, 2567–2576.

    Article  PubMed  Google Scholar 

  14. Hirai, K., Baba, K., Goto, T., Ousaka, D., Kondo, M., Eitoku, T., et al. (2021). Outcomes of right ventricular outflow tract reconstruction in children: retrospective comparison between bovine jugular vein and expanded polytetrafluoroethylene conduits. Pediatr Cardiol, 42, 100–108.

    Article  PubMed  Google Scholar 

  15. Allen, B. S., El-Zein, C., Cuneo, B., Cava, J. P., Barth, M. J., & Ilbawi, M. N. (2002). Pericardial tissue valves and gore-tex conduits as an alternative for right ventricular outflow tract replacement in children. The Annals of Thoracic Surgery., 74, 771–777.

    Article  PubMed  Google Scholar 

  16. Miyazaki, T., Yamagishi, M., Nakashima, A., Fukae, K., Nakano, T., Yaku, H., & Kado, H. (2007). Expanded polytetrafluoroethylene valved conduit and patch with bulging sinuses in right ventricular outflow tract reconstruction. The Journal of Thoracic and Cardiovascular Surgery., 134, 327–332.

    Article  PubMed  Google Scholar 

  17. Nosál, M., Poruban, R., Valentík, P., Šagát, M., Nagi, A. S., & Kántorová, A. (2012). Initial experience with polytetrafluoroethylene leaflet extensions for aortic valve repair. EUR J CARDIO-THORAC., 41, 1255–1258.

    Article  Google Scholar 

  18. Cardiovascular implants - Cardiac valve prostheses - Part 3: Heart valve substitutes implanted by transcatheter techniques. International Organization for Standardization. ISO 5840-3:2013(E).

  19. Swanson, W. M., & Clark, R. E. (1974). Dimensions and geometric relationships of the human aortic value as a function of pressure. Circ Res., 35, 871–882.

    Article  CAS  PubMed  Google Scholar 

  20. Brown, O. R., Demots, H., Kloster, F. E., Roberts, A., Menashe, V. D., & Beals, R. K. (1975). Aortic root dilatation and mitral valve prolapse in Marfan’s syndrome: an ECHOCARDIO graphic study. Circulation., 52(4), 651–657.

    Article  CAS  PubMed  Google Scholar 

  21. Zhu, G., Wei, Y., Yuan, Q., Cai, L., Nakao, M., & Yeo, J. H. (2020). In-Vitro assessment of the impacts of leaflet design on the hemodynamic characteristics of ePTFE pulmonary prosthetic valves. Frontiers in Bioengineering and Biotechnology., 7, 477.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Generous, M. M., Qasem, N. A. A., Qureshi, B. A., et al. (2020). A Comprehensive Review of Saline Water Correlations and Data-Part I: Thermodynamic Properties. Arab J Sci Eng., 45, 8817–8876.

    Article  Google Scholar 

  23. Qasem, N. A. A., Generous, M. M., Qureshi, B. A., et al. (2021). A Comprehensive Review of Saline Water Correlations and Data: Part II-Thermophysical Properties. Arab J Sci Eng., 46, 1941–1979.

    Article  CAS  Google Scholar 

  24. Textiles-Tensile properties of fabrics-Part 1 (2013). Determination of maximum force and elongation at maximum force using the strip method. International Organization for Standardization. ISO 13934-1:(E).

  25. Huber, M. L., Perkins, R. A., Laesecke, A., Friend, D. G., Sengers, J. V., Assael, M. J., et al. (2009). New international formulation for the viscosity of H2O. J Phys Chem Ref Data., 38, 101–125.

    Article  CAS  Google Scholar 

  26. Griffith, B. E. (2012). Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int J Numer Meth Bio., 28, 317–345.

    Article  Google Scholar 

  27. Puso, M. A., Sanders, J., Settgast, R., & Liu, B. (2012). An embedded mesh method in a multiple material ALE. Comput Method Appl M., 245–246, 273–289.

    Article  Google Scholar 

  28. Otto, C. M., Nishimura, R. A., Bonow, R. O., Carabello, B. A., Erwin, J. P., Gentile, F., et al. (2021). 2020 ACC/AHA guideline for the management of patients with valvular heart disease. J Am Coll Cardiol, 77, e25–e197.

    Article  PubMed  Google Scholar 

  29. Merkx, R., Duijnhouwer, A. L., Vink, E., Roos-Hesselink, J. W., & Schokking, M. (2017). Aortic diameter growth in children with a bicuspid aortic valve. The American Journal of Cardiology., 120, 131–136.

    Article  PubMed  Google Scholar 

  30. Cattermole, G. N., Leung, P. Y. M., Ho, G. Y. L., Lau, P. W. S., Chan, C. P. Y., Chan, S. S. W., Smith, B. E., Graham, C. A., & Rainer, T. H. (2017). The normal ranges of cardiovascular parameters measured using the ultrasonic cardiac output monitor. Physiological Reports., 5, e13195.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chandran, K. B., Yearwood, T. L., Chen, C. J., et al. (1983). Pulsatile flow experiments on heart valve prostheses. Medical and Biological Engineering and Computing., 21(5), 529–537.

    Article  CAS  PubMed  Google Scholar 

  32. Sigüenza, J., Pott, D., Mendez, S., et al. (2018). Fluid-structure interaction of a pulsatile flow with an aortic valve model: a combined experimental and numerical study. International Journal for Numerical Methods in Biomedical Engineering., 34(4), e2945.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was partially supported by Zhuhai Fudan Innovation Institute. We thank Shanghai Testing and Inspection Institute for Medical Devices for mechanical testing of ePTFE membranes.

Funding

This study was partially supported by National Natural Science Foundation of China (Nos. 11872152 and 32071310).

Author information

Authors and Affiliations

Authors

Contributions

YF developed the concept, performed the in vitro pulsatile test and computational experiments, designed the DOE test, made the analysis, and wrote the manuscript; JL contributed to the in vitro pulsatile test and analysis of data; WY contributed to the performance of the material experimental test; BZ contributed to the manuscript preparation and editing; BJ contributed to the design of experiments and analysis of data; SW developed the project concept, contributed to manuscript editing, and supervised the overall project; HZ developed the project concept, design of experiments, and data analysis. All the authors read and edited the final version of the manuscript.

Corresponding authors

Correspondence to Shengzhang Wang or Huifeng Zhang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Associate Editor Craig M. Stolen oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Zhang, B., Li, J. et al. Morphology Optimization of Leaflet for Surgical Reconstruction of the Aortic Valve: In Vitro Test and Simulation-Based DOE Study. J. of Cardiovasc. Trans. Res. 16, 177–191 (2023). https://doi.org/10.1007/s12265-022-10287-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-022-10287-0

Keywords

Navigation