Skip to main content

Advertisement

Log in

Matrix Metalloproteinase-Targeted SPECT/CT Imaging for Evaluation of Therapeutic Hydrogels for the Early Modulation of Post-Infarct Myocardial Remodeling

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Following myocardial infarction (MI), maladaptive upregulation of matrix metalloproteinase (MMP) alters extracellular matrix leading to cardiac remodeling. Intramyocardial hydrogel delivery provides a vehicle for local delivery of MMP tissue inhibitors (rTIMP-3) for MMP activity modulation. We evaluated swine 10–14 days following MI randomized to intramyocardial delivery of saline, degradable hyaluronic acid (HA) hydrogel, or rTIMP-3 releasing hydrogel with an MMP-targeted radiotracer (99mTc-RP805), 201Tl, and CT. Significant left ventricle (LV) wall thinning, increased wall stress, reduced circumferential wall strain occurred in the MI region of MI-Saline group along with left atrial (LA) dilation, while these changes were modulated in both hydrogel groups. 99mTc-RP805 activity increased twofold in MI-Saline group and attenuated in hydrogel animals. Infarct size significantly reduced only in rTIMP-3 hydrogel group. Hybrid SPECT/CT imaging demonstrated a therapeutic benefit of intramyocardial delivery of hydrogels post-MI and reduced remodeling of LA and LV in association with a reduction in MMP activation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dixon, J. A., & Spinale, F. G. (2011). Myocardial remodeling: Cellular and extracellular events and targets. Annual Review of Physiology, 73, 47–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Beinart, R., Boyko, V., Schwammenthal, E., Kuperstein, R., Sagie, A., Hod, H., et al. (2004). Long-term prognostic significance of left atrial volume in acute myocardial infarction. Journal of the American College of Cardiology, 44, 327–334.

    Article  PubMed  Google Scholar 

  3. Stacy, M. R., Lin, B. A., Thorn, S. L., Lobb, D. C., Maxfield, M. W., Novack, C., et al. (2022). Regional heterogeneity in determinants of atrial matrix remodeling and association with atrial fibrillation vulnerability postmyocardial infarction. Heart Rhythm, 19, 847–855.

    Article  PubMed  Google Scholar 

  4. Lindsey, M. L., Iyer, R. P., Jung, M., DeLeon-Pennell, K. Y., & Ma, Y. (2016). Matrix metalloproteinases as input and output signals for post-myocardial infarction remodeling. Journal of Molecular and Cellular Cardiology, 91, 134–140.

    Article  CAS  PubMed  Google Scholar 

  5. Thorn, S. L., Barlow, S. C., Feher, A., Stacy, M. R., Doviak, H., Jacobs, J., et al. (2019). Application of hybrid matrix metalloproteinase-targeted and dynamic (201)Tl single-photon emission computed tomography/computed tomography imaging for evaluation of early post-myocardial infarction remodeling. Circulation: Cardiovascular Imaging, 12, e009055.

    PubMed  Google Scholar 

  6. Su, H., Spinale, F. G., Dobrucki, L. W., Song, J., Hua, J., Sweterlitsch, S., et al. (2005). Noninvasive targeted imaging of matrix metalloproteinase activation in a murine model of postinfarction remodeling. Circulation, 112, 3157–3167.

    Article  CAS  PubMed  Google Scholar 

  7. Sahul, Z. H., Mukherjee, R., Song, J., McAteer, J., Stroud, R. E., Dione, D. P., et al. (2011). Targeted imaging of the spatial and temporal variation of matrix metalloproteinase activity in a porcine model of postinfarct remodeling: Relationship to myocardial dysfunction. Circulation: Cardiovascular Imaging, 4, 381–91.

    PubMed  Google Scholar 

  8. Spinale, F. G., Coker, M. L., Heung, L. J., Bond, B. R., Gunasinghe, H. R., Etoh, T., et al. (2000). A matrix metalloproteinase induction/activation system exists in the human left ventricular myocardium and is upregulated in heart failure. Circulation, 102, 1944–1949.

    Article  CAS  PubMed  Google Scholar 

  9. Morishita, T., Uzui, H., Mitsuke, Y., Amaya, N., Kaseno, K., Ishida, K., et al. (2017). Association between matrix metalloproteinase-9 and worsening heart failure events in patients with chronic heart failure. ESC Heart Failure, 4, 321–330.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li, Y. Y., Feldman, A. M., Sun, Y., & McTiernan, C. F. (1998). Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation, 98, 1728–1734.

    Article  CAS  PubMed  Google Scholar 

  11. Apple, K. A., Yarbrough, W. M., Mukherjee, R., Deschamps, A. M., Escobar, P. G., Mingoia, J. T., et al. (2006). Selective targeting of matrix metalloproteinase inhibition in post-infarction myocardial remodeling. Journal of Cardiovascular Pharmacology, 47, 228–235.

    Article  CAS  PubMed  Google Scholar 

  12. Purcell, B. P., Lobb, D., Charati, M. B., Dorsey, S. M., Wade, R. J., Zellars, K. N., et al. (2014). Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition. Nature Materials, 13, 653–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cerisano, G., Buonamici, P., Gori, A. M., Valenti, R., Sciagra, R., Giusti, B., et al. (2015). Matrix metalloproteinases and their tissue inhibitor after reperfused ST-elevation myocardial infarction treated with doxycycline. Insights from the TIPTOP trial. International Journal of Cardiology, 197, 147–53.

    Article  PubMed  Google Scholar 

  14. Hudson, M. P., Armstrong, P. W., Ruzyllo, W., Brum, J., Cusmano, L., Krzeski, P., et al. (2006). Effects of selective matrix metalloproteinase inhibitor (PG-116800) to prevent ventricular remodeling after myocardial infarction: results of the PREMIER (Prevention of Myocardial Infarction Early Remodeling) trial. Journal of the American College of Cardiology, 48, 15–20.

    Article  CAS  PubMed  Google Scholar 

  15. Tous, E., Ifkovits, J. L., Koomalsingh, K. J., Shuto, T., Soeda, T., Kondo, N., et al. (2011). Influence of injectable hyaluronic acid hydrogel degradation behavior on infarction-induced ventricular remodeling. Biomacromolecules, 12, 4127–4135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mukherjee, R., Zavadzkas, J. A., Saunders, S. M., McLean, J. E., Jeffords, L. B., Beck, C., et al. (2008). Targeted myocardial microinjections of a biocomposite material reduces infarct expansion in pigs. Annals of Thoracic Surgery, 86, 1268–1276.

    Article  PubMed  Google Scholar 

  17. McLaughlin, S., McNeill, B., Podrebarac, J., Hosoyama, K., Sedlakova, V., Cron, G., et al. (2019). Injectable human recombinant collagen matrices limit adverse remodeling and improve cardiac function after myocardial infarction. Nature Communications, 10, 4866.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rodell, C. B., Lee, M. E., Wang, H., Takebayashi, S., Takayama, T., Kawamura, T., Arkles J. S., Dusaj, N. N., Dorsey, S. M., Witschey, W. R., Pilla, J. J., Gorman, J. H. 3rd, Wenk, J. F., Burdick, J. A., & Gorman, R. C. (2016). Injectable shear-thinning hydrogels for minimally invasive delivery to infarcted myocardium to limit left ventricular remodeling. Circulation: Cardiovascular Interventions, 9(10):e004058. https://doi.org/10.1161/CIRCINTERVENTIONS.116.004058

  19. Tous, E., Purcell, B., Ifkovits, J. L., & Burdick, J. A. (2011). Injectable acellular hydrogels for cardiac repair. Journal of Cardiovascular Translational Research, 4, 528–542.

    Article  PubMed  Google Scholar 

  20. Chen, M. H., Chung, J. J., Mealy, J. E., Zaman, S., Li, E. C., Arisi, M. F., et al. (2019). Injectable supramolecular hydrogel/microgel composites for therapeutic delivery. Macromolecular Bioscience, 19, e1800248.

    Article  PubMed  Google Scholar 

  21. Wang, L. L., Chung, J. J., Li, E. C., Uman, S., Atluri, P., & Burdick, J. A. (2018). Injectable and protease-degradable hydrogel for siRNA sequestration and triggered delivery to the heart. Journal of Controlled Release, 285, 152–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Purcell, B. P., Barlow, S. C., Perreault, P. E., Freeburg, L., Doviak, H., Jacobs, J., et al. (2018). Delivery of a matrix metalloproteinase-responsive hydrogel releasing TIMP-3 after myocardial infarction: effects on left ventricular remodeling. American Journal of Physiology: Heart and Circulatory Physiology, 315, H814–H825.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, H., Rodell, C. B., Zhang, X., Dusaj, N. N., Gorman, J. H., 3rd., Pilla, J. J., et al. (2018). Effects of hydrogel injection on borderzone contractility post-myocardial infarction. Biomechanics and Modeling in Mechanobiology, 17, 1533–1542.

    Article  PubMed  Google Scholar 

  24. Wang, L. L., Liu, Y., Chung, J. J., Wang, T., Gaffey, A. C., Lu, M., et al. (2017). Local and sustained miRNA delivery from an injectable hydrogel promotes cardiomyocyte proliferation and functional regeneration after ischemic injury. Nature Biomedical Engineering, 1, 983–992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eckhouse, S. R., Purcell, B. P., McGarvey, J. R., Lobb, D., Logdon, C. B., Doviak, H., et al. (2014). Local hydrogel release of recombinant TIMP-3 attenuates adverse left ventricular remodeling after experimental myocardial infarction. Science Translational Medicine, 6, 223ra21.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lobb, D. C., Doviak, H., Brower, G. L., Romito, E., O’Neill, J. W., Smith, S., et al. (2020). Targeted injection of a truncated form of tissue inhibitor of metalloproteinase 3 alters post-myocardial infarction remodeling. Journal of Pharmacology and Experimental Therapeutics, 375, 296–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, Y. H., Sahul, Z., Weyman, C. A., Dione, D. P., Dobrucki, W. L., Mekkaoui, C., et al. (2011). Accuracy and reproducibility of absolute quantification of myocardial focal tracer uptake from molecularly targeted SPECT/CT: A canine validation. Journal of Nuclear Medicine, 52, 453–460.

    Article  PubMed  Google Scholar 

  28. Torres, W. M., Jacobs, J., Doviak, H., Barlow, S. C., Zile, M. R., Shazly, T., et al. (2018). Regional and temporal changes in left ventricular strain and stiffness in a porcine model of myocardial infarction. American Journal of Physiology: Heart and Circulatory Physiology, 315, H958–H967.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Shehata, I. E., Cheng, C. I., Sung, P. H., Ammar, A. S., El-Sherbiny, I. A. E., & Ghanem, I. G. A. (2018). Predictors of myocardial functional recovery following successful reperfusion of acute ST elevation myocardial infarction. Echocardiography, 35, 1571–1578.

    Article  PubMed  Google Scholar 

  30. Spinale, F. G., Mukherjee, R., Zavadzkas, J. A., Koval, C. N., Bouges, S., Stroud, R. E., et al. (2010). Cardiac restricted overexpression of membrane type-1 matrix metalloproteinase causes adverse myocardial remodeling following myocardial infarction. Journal of Biological Chemistry, 285, 30316–30327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Iyer, R. P., Jung, M., & Lindsey, M. L. (2016). MMP-9 signaling in the left ventricle following myocardial infarction. American Journal of Physiology: Heart and Circulatory Physiology, 311, H190–H198.

    PubMed  PubMed Central  Google Scholar 

  32. Takawale, A., Zhang, P., Azad, A., Wang, W., Wang, X., Murray, A. G., et al. (2017). Myocardial overexpression of TIMP3 after myocardial infarction exerts beneficial effects by promoting angiogenesis and suppressing early proteolysis. American Journal of Physiology: Heart and Circulatory Physiology, 313, H224–H236.

    PubMed  Google Scholar 

  33. Yan, A. T., Yan, R. T., Spinale, F. G., Afzal, R., Gunasinghe, H. R., Stroud, R. E., et al. (2008). Relationships between plasma levels of matrix metalloproteinases and neurohormonal profile in patients with heart failure. European Journal of Heart Failure, 10, 125–128.

    Article  CAS  PubMed  Google Scholar 

  34. Kondo, N., Temma, T., Aita, K., Shimochi, S., Koshino, K., Senda, M., et al. (2018). Development of matrix metalloproteinase-targeted probes for lung inflammation detection with positron emission tomography. Sci Rep-Uk, 8, 1347–1357.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the assistance of the University of South Carolina and Yale University veterinarian staff for their assistance with ensuring the health and well-being of the animals in this study. We also acknowledge the technical assistance of Christi Hawley.

Funding

This work was supported by the National Institute of Health grants: R01HL113352 (AJS), R01HL137365 (AJS), T32HL098069 (AJS), S10RR025555 (AJS), and R42HL131280 (FGS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert J. Sinusas.

Ethics declarations

Ethics Approval and Consent to Participate

No human studies were carried out by the authors for this article. All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate institutional committees at the University of South Carolina and Yale University.

Conflict of Interest

F.G. Spinale is the founder of MicroVide, LLC, and A.J. Sinusas is a limited partner and consultant of MicroVide, LLC, which holds the license for the use of 99mTc-RP805 in myocardial applications.

Additional information

Associate Editor Craig M. Stolen oversaw the review of this article

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 KB)

Supplementary file2 (DOCX 245 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thorn, S.L., Shuman, J.A., Stacy, M.R. et al. Matrix Metalloproteinase-Targeted SPECT/CT Imaging for Evaluation of Therapeutic Hydrogels for the Early Modulation of Post-Infarct Myocardial Remodeling. J. of Cardiovasc. Trans. Res. 16, 155–165 (2023). https://doi.org/10.1007/s12265-022-10280-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-022-10280-7

Keywords

Navigation