Skip to main content

Advertisement

Log in

Functional Impact and Regulation of Alternative Splicing in Mouse Heart Development and Disease

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Alternative splicing (AS) plays a major role in the generation of transcript diversity. In the heart, roles have been described for some AS variants, but the global impact and regulation of AS patterns are poorly understood. Here, we studied the AS profiles in heart disease, their relationship with heart development, and the regulatory mechanisms controlling AS dynamics in the mouse heart. We found that AS profiles characterized the different groups and that AS and gene expression changes affected independent genes and biological functions. Moreover, AS changes, specifically in heart disease, were associated with potential protein–protein interaction changes. While developmental transitions were mainly driven by the upregulation of MBNL1, AS changes in disease were driven by a complex regulatory network, where PTBP1 played a central role. Indeed, PTBP1 over-expression was sufficient to induce cardiac hypertrophy and diastolic dysfunction, potentially by perturbing AS patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Benjamin, E. J., Muntner, P., Alonso, A., Bittencourt, M. S., Callaway, C. W., Carson, A. P., Chamberlain, A. M., Chang, A. R., Cheng, S., Das, S. R., Delling, F. N., Djousse, L., Elkind, M. S. V., Ferguson, J. F., Fornage, M., Jordan, L. C., Khan, S. S., Kissela, B. M., Knutson, K. L., … Null, N. (2019). Heart disease and stroke statistics—2019 update: A report from the American Heart Association. Circulation, 139(10), e56–e66. https://doi.org/10.1161/CIR.0000000000000659

    Article  Google Scholar 

  2. Lareau, L. F., Green, R. E., Bhatnagar, R. S., & Brenner, S. E. (2004). The evolving roles of alternative splicing. Current Opinion in Structural Biology, 14(3), 273–282. https://doi.org/10.1016/j.sbi.2004.05.002

    Article  CAS  Google Scholar 

  3. Barbosa-Morais, N. L., Irimia, M., Pan, Q., Xiong, H. Y., Gueroussov, S., Lee, L. J., Slobodeniuc, V., Kutter, C., Watt, S., Çolak, R., Kim, T., Misquitta-Ali, C. M., Wilson, M. D., Kim, P. M., Odom, D. T., Frey, B. J., & Blencowe, B. J. (2012). The evolutionary landscape of alternative splicing in vertebrate species. Science, 338(6114), 1587–1593. https://doi.org/10.1126/science.1230612

    Article  CAS  Google Scholar 

  4. Lahmers, S., Wu, Y., Call, D. R., Labeit, S., & Granzier, H. (2004). Developmental control of titin isoform expression and passive stiffness in fetal and neonatal myocardium. Circulation Research, 94(4), 505–513. https://doi.org/10.1161/01.res.0000115522.52554.86

    Article  CAS  Google Scholar 

  5. Kanadia, R. N., Johnstone, K. A., Mankodi, A., Lungu, C., Thornton, C. A., Esson, D., Timmers, A. M., Hauswirth, W. W., & Swanson, M. S. (2003). A muscleblind knockout model for myotonic dystrophy. Science, 302(5652), 1978–1980. https://doi.org/10.1126/science.1088583

    Article  CAS  Google Scholar 

  6. Kalsotra, A., & Cooper, T. A. (2011). Functional consequences of developmentally regulated alternative splicing. Nature Reviews. Genetics, 12(10), 715–729.

    Article  CAS  Google Scholar 

  7. Baralle, F. E., & Giudice, J. (2017). Alternative splicing as a regulator of development and tissue identity. Nature Reviews Molecular Cell Biology, 18(7), 437–451. https://doi.org/10.1038/nrm.2017.27

    Article  CAS  Google Scholar 

  8. Yang, Y. C., Di, C., Hu, B., Zhou, M., Liu, Y., Song, N., Li, Y., Umetsu, J., & Lu, Z. J. (2015). CLIPdb: A CLIP-seq database for protein-RNA interactions. BMC Genomics, 16(1), 51. https://doi.org/10.1186/s12864-015-1273-2

    Article  CAS  Google Scholar 

  9. Orchard, S., Ammari, M., Aranda, B., Breuza, L., Briganti, L., Broackes-Carter, F., Campbell, N. H., Chavali, G., Chen, C., Del-Toro, N., Duesbury, M., Dumousseau, M., Galeota, E., Hinz, U., Iannuccelli, M., Jagannathan, S., Jimenez, R., Khadake, J., Lagreid, A., … Hermjakob, H. (2014). The MIntAct project – IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Research, 42(Database issue), D358-363. https://doi.org/10.1093/nar/gkt1115

    Article  CAS  Google Scholar 

  10. Ghadie, M. A., Lambourne, L., Vidal, M., & Xia, Y. (2017). Domain-based prediction of the human isoform interactome provides insights into the functional impact of alternative splicing. PLoS Computational Biology, 13(8), e1005717. https://doi.org/10.1371/journal.pcbi.1005717

    Article  CAS  Google Scholar 

  11. Yang, X., Coulombe-Huntington, J., Kang, S., Sheynkman, G. M., Hao, T., Richardson, A., Sun, S., Yang, F., Shen, Y. A., Murray, R. R., Spirohn, K., Begg, B. E., Duran-Frigola, M., Macwilliams, A., Pevzner, S. J., Zhong, Q., Trigg, S. A., Tam, S., Ghamsari, L., … Vidal, M. (2016). Widespread expansion of protein interaction capabilities by alternative splicing. Cell, 164(4), 805–817. https://doi.org/10.1016/j.cell.2016.01.029

    Article  CAS  Google Scholar 

  12. Linares, A. J., Lin, C. H., Damianov, A., Adams, K. L., Novitch, B. G., & Black, D. L. (2015). The splicing regulator PTBP1 controls the activity of the transcription factor Pbx1 during neuronal differentiation. eLife, 4e09268. https://doi.org/10.7554/eLife.09268

  13. Richards, D. A., Aronovitz, M. J., Calamaras, T. D., Tam, K., Martin, G. L., Liu, P., Bowditch, H. K., Zhang, P., Huggins, G. S., & Blanton, R. M. (2019). Distinct phenotypes induced by three degrees of transverse aortic constriction in mice. Scientific Reports, 9(1), 5844. https://doi.org/10.1038/s41598-019-42209-7

    Article  CAS  Google Scholar 

  14. Tapial, J., Ha, K. C. H., Sterne-Weiler, T., Gohr, A., Braunschweig, U., Hermoso-Pulido, A., Quesnel-Vallières, M., Permanyer, J., Sodaei, R., Marquez, Y., Cozzuto, L., Wang, X., Gómez-Velázquez, M., Rayon, T., Manzanares, M., Ponomarenko, J., Blencowe, B. J., & Irimia, M. (2017). An atlas of alternative splicing profiles and functional associations reveals new regulatory programs and genes that simultaneously express multiple major isoforms. Genome Research, 27(10), 1759–1768. https://doi.org/10.1101/gr.220962.117

    Article  CAS  Google Scholar 

  15. Gehman, L. T., Stoilov, P., Maguire, J., Damianov, A., Lin, C.-H., Shiue, L., Ares, M., Mody, I., & Black, D. L. (2011). The splicing regulator Rbfox1 (A2BP1) controls neuronal excitation in the mammalian brain. Nature Genetics, 43(7), 706–711. http://www.nature.com/ng/journal/v43/n7/abs/ng.841.html#supplementary-information.

    Article  CAS  Google Scholar 

  16. Lara-Pezzi, E., Desco, M., Gatto, A., & Gomez-Gaviro, M. V. (2016). Neurogenesis: Regulation by alternative splicing and related posttranscriptional processes. The Neuroscientist. https://doi.org/10.1177/1073858416678604

    Article  Google Scholar 

  17. Lee, J.-A., Damianov, A., Lin, C.-H., Fontes, M., Parikshak, N. N., Anderson, E. S., Geschwin, D. H., Black, D. L., & Martin, K. C. (2016). Cytoplasmic Rbfox1 regulates the expression of synaptic and autism-related genes. Neuron, 89(1), 113–128. https://doi.org/10.1016/j.neuron.2015.11.025

    Article  CAS  Google Scholar 

  18. Irimia, M., Weatheritt, R. J., Ellis, J. D., Parikshak, N. N., Gonatopoulos-Pournatzis, T., Babor, M., Quesnel-Vallières, M., Tapial, J., Raj, B., O’hanlon, D., Barrios-Rodiles, M., Sternberg, M. J. E., Cordes, S. P., Roth, F. P., Wrana, J. L., Geschwind, D. H., & Blencowe, B. J. (2014). A highly conserved program of neuronal microexons is misregulated in autistic brains. Cell, 159(7), 1511–1523. https://doi.org/10.1016/j.cell.2014.11.035

    Article  CAS  Google Scholar 

  19. Climente-González, H., Porta-Pardo, E., Godzik, A., & Eyras, E. (2017). The functional impact of alternative splicing in cancer. Cell Reports, 20(9), 2215–2226. https://doi.org/10.1016/j.celrep.2017.08.012

    Article  CAS  Google Scholar 

  20. Seyfried, J., Wang, X., Kharebava, G., & Tournier, C. (2005). A novel mitogen-activated protein kinase docking site in the N terminus of MEK5alpha organizes the components of the extracellular signal-regulated kinase 5 signaling pathway. Molecular and Cellular Biology, 25(22), 9820–9828. https://doi.org/10.1128/mcb.25.22.9820-9828.2005

    Article  CAS  Google Scholar 

  21. Lee, J. H., Gao, C., Peng, G., Greer, C., Ren, S., Wang, Y., & Xiao, X. (2011). Analysis of transcriptome complexity through RNA sequencing in normal and failing murine hearts. Circulation Research, 109(12), 1332–1341. https://doi.org/10.1161/circresaha.111.249433

    Article  CAS  Google Scholar 

  22. Park, S. (2016). Defective Anks1a disrupts the export of receptor tyrosine kinases from the endoplasmic reticulum. BMB Reports, 49(12), 651–652. https://doi.org/10.5483/bmbrep.2016.49.12.186

    Article  CAS  Google Scholar 

  23. Tong, J., Sydorskyy, Y., St-Germain, J. R., Taylor, P., Tsao, M. S., & Moran, M. F. (2013). Odin (ANKS1A) modulates EGF receptor recycling and stability. PLoS ONE, 8(6), e64817. https://doi.org/10.1371/journal.pone.0064817

    Article  CAS  Google Scholar 

  24. Crone, S. A., Zhao, Y. Y., Fan, L., Gu, Y., Minamisawa, S., Liu, Y., Peterson, K. L., Chen, J., Kahn, R., Condorelli, G., Ross, J., Jr., Chien, K. R., & Lee, K. F. (2002). ErbB2 is essential in the prevention of dilated cardiomyopathy. Nature Medicine, 8(5), 459–465. https://doi.org/10.1038/nm0502-459

    Article  CAS  Google Scholar 

  25. D’uva, G., Aharonov, A., Lauriola, M., Kain, D., Yahalom-Ronen, Y., Carvalho, S., Weisinger, K., Bassat, E., Rajchman, D., Yifa, O., Lysenko, M., Konfino, T., Hegesh, J., Brenner, O., Neeman, M., Yarden, Y., Leor, J., Sarig, R., Harvey, R. P., & Tzahor, E. (2015). ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nature Cell Biology, 17(5), 627–638. https://doi.org/10.1038/ncb3149

    Article  CAS  Google Scholar 

  26. Dixon, D. M., Choi, J., El-Ghazali, A., Park, S. Y., Roos, K. P., Jordan, M. C., Fishbein, M. C., Comai, L., & Reddy, S. (2015). Loss of muscleblind-like 1 results in cardiac pathology and persistence of embryonic splice isoforms. Scientific Reports, 59042.https://doi.org/10.1038/srep09042

  27. Kalsotra, A., Xiao, X., Ward, A. J., Castle, J. C., Johnson, J. M., Burge, C. B., & Cooper, T. A. (2008). A postnatal switch of CELF and MBNL proteins reprograms alternative splicing in the developing heart. Proceedings of the National Academy of Sciences of the United States of America, 105(51), 20333–20338. https://doi.org/10.1073/pnas.0809045105

    Article  Google Scholar 

  28. Fu, X.-D., & Ares, M., Jr. (2014). Context-dependent control of alternative splicing by RNA-binding proteins. Nature Reviews. Genetics, 15(10), 689–701. https://doi.org/10.1038/nrg3778

    Article  CAS  Google Scholar 

  29. Liu, Z., Wang, L., Welch, J. D., Ma, H., Zhou, Y., Vaseghi, H. R., Yu, S., Wall, J. B., Alimohamadi, S., Zheng, M., Yin, C., Shen, W., Prins, J. F., Liu, J., & Qian, L. (2017). Single-cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyte. Nature, 551(7678), 100–104. https://doi.org/10.1038/nature24454

    Article  CAS  Google Scholar 

  30. Fochi, S., Lorenzi, P., Galasso, M., Stefani, C., Trabetti, E., Zipeto, D., & Romanelli, M. G. (2020). The emerging role of the RBM20 and PTBP1 ribonucleoproteins in heart development and cardiovascular diseases. Genes, 11(4). https://doi.org/10.3390/genes11040402

  31. Kim, N., Stiegler, A. L., Cameron, T. O., Hallock, P. T., Gomez, A. M., Huang, J. H., Hubbard, S. R., Dustin, M. L., & Burden, S. J. (2008). Lrp4 is a receptor for Agrin and forms a complex with MuSK. Cell, 135(2), 334–342. https://doi.org/10.1016/j.cell.2008.10.002

    Article  CAS  Google Scholar 

  32. Bassat, E., Mutlak, Y. E., Genzelinakh, A., Shadrin, I. Y., Baruch Umansky, K., Yifa, O., Kain, D., Rajchman, D., Leach, J., RiabovBassat, D., Udi, Y., Sarig, R., Sagi, I., Martin, J. F., Bursac, N., Cohen, S., & Tzahor, E. (2017). The extracellular matrix protein agrin promotes heart regeneration in mice. Nature, 547(7662), 179–184. https://doi.org/10.1038/nature22978

    Article  CAS  Google Scholar 

  33. Hilgenberg, L. G. W., Pham, B., Ortega, M., Walid, S., Kemmerly, T., O’dowd, D. K., & Smith, M. A. (2009). Agrin regulation of alpha3 sodium-potassium ATPase activity modulates cardiac myocyte contraction. The Journal of Biological Chemistry, 284(25), 16956–16965. https://doi.org/10.1074/jbc.M806855200

    Article  CAS  Google Scholar 

  34. Johnson, E. B., Steffen, D. J., Lynch, K. W., & Herz, J. (2006). Defective splicing of Megf7/Lrp4, a regulator of distal limb development, in autosomal recessive mulefoot disease. Genomics, 88(5), 600–609. https://doi.org/10.1016/j.ygeno.2006.08.005

    Article  CAS  Google Scholar 

  35. Li, Y., Pawlik, B., Elcioglu, N., Aglan, M., Kayserili, H., Yigit, G., Percin, F., Goodman, F., Nürnberg, G., Cenani, A., Urquhart, J., Chung, B. D., Ismail, S., Amr, K., Aslanger, A. D., Becker, C., Netzer, C., Scambler, P., Eyaid, W., … Wollnik, B. (2010). LRP4 mutations alter Wnt/beta-catenin signaling and cause limb and kidney malformations in Cenani-Lenz syndrome. American Journal of Human Genetics, 86(5), 696–706. https://doi.org/10.1016/j.ajhg.2010.03.004

    Article  CAS  Google Scholar 

  36. Simon-Chazottes, D., Tutois, S., Kuehn, M., Evans, M., Bourgade, F., Cook, S., Davisson, M. T., & Guénet, J. L. (2006). Mutations in the gene encoding the low-density lipoprotein receptor LRP4 cause abnormal limb development in the mouse. Genomics, 87(5), 673–677. https://doi.org/10.1016/j.ygeno.2006.01.007

    Article  CAS  Google Scholar 

  37. Fred, R. G., Tillmar, L., & Welsh, N. (2006). The role of PTB in insulin mRNA stability control. Current Diabetes Reviews, 2(3), 363–366. https://doi.org/10.2174/157339906777950570

    Article  CAS  Google Scholar 

  38. Li, Y. I., Sanchez-Pulido, L., Haerty, W., & Ponting, C. P. (2015). RBFOX and PTBP1 proteins regulate the alternative splicing of micro-exons in human brain transcripts. Genome Research, 25(1), 1–13. https://doi.org/10.1101/gr.181990.114

    Article  CAS  Google Scholar 

  39. Weyn-Vanhentenryck, S. M., Feng, H., Ustianenko, D., Duffié, R., Yan, Q., Jacko, M., Martinez, J. C., Goodwin, M., Zhang, X., Hengst, U., Lomvardas, S., Swanson, M. S., & Zhang, C. (2018). Precise temporal regulation of alternative splicing during neural development. Nature Communications, 9(1), 2189. https://doi.org/10.1038/s41467-018-04559-0

    Article  CAS  Google Scholar 

  40. Giudice, J., Xia, Z., Wang, E. T., Scavuzzo, M. A., Ward, A. J., Kalsotra, A., Wang, W., Wehrens, X. H., Burge, C. B., Li, W., & Cooper, T. A. (2014). Alternative splicing regulates vesicular trafficking genes in cardiomyocytes during postnatal heart development. Nature Communications, 53603.https://doi.org/10.1038/ncomms4603

  41. Dominguez, D., Freese, P., Alexis, M. S., Su, A., Hochman, M., Palden, T., Bazile, C., Lambert, N. J., Van Nostrand, E. L., Pratt, G. A., Yeo, G. W., Graveley, B. R., & Burge, C. B. (2018). Sequence, structure, and context preferences of human RNA binding proteins. Molecular Cell, 70(5), 854-867.e859. https://doi.org/10.1016/j.molcel.2018.05.001

    Article  CAS  Google Scholar 

  42. Ray, D., Kazan, H., Cook, K. B., Weirauch, M. T., Najafabadi, H. S., Li, X., Gueroussov, S., Albu, M., Zheng, H., Yang, A., Na, H., Irimia, M., Matzat, L. H., Dale, R. K., Smith, S. A., Yarosh, C. A., Kelly, S. M., Nabet, B., Mecenas, D., … Hughes, T. R. (2013). A compendium of RNA-binding motifs for decoding gene regulation. Nature, 499(7457), 172–177. https://doi.org/10.1038/nature12311

    Article  CAS  Google Scholar 

  43. Cherny, D., Gooding, C., Eperon, G. E., Coelho, M. B., Bagshaw, C. R., Smith, C. W., & Eperon, I. C. (2010). Stoichiometry of a regulatory splicing complex revealed by single-molecule analyses. The EMBO Journal, 29(13), 2161–2172. https://doi.org/10.1038/emboj.2010.103

    Article  CAS  Google Scholar 

  44. Gooding, C., Edge, C., Lorenz, M., Coelho, M. B., Winters, M., Kaminski, C. F., Cherny, D., Eperon, I. C., & Smith, C. W. (2013). MBNL1 and PTB cooperate to repress splicing of Tpm1 exon 3. Nucleic Acids Research, 41(9), 4765–4782. https://doi.org/10.1093/nar/gkt168

    Article  CAS  Google Scholar 

  45. Merkin, J., Russell, C., Chen, P., & Burge, C. B. (2012). Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science, 338(6114), 1593–1599. https://doi.org/10.1126/science.1228186

    Article  CAS  Google Scholar 

  46. Mazin, P. V., Khaitovich, P., Cardoso-Moreira, M., & Kaessmann, H. (2021). Alternative splicing during mammalian organ development. Nature Genetics, 53(6), 925–934. https://doi.org/10.1038/s41588-021-00851-w

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank CNIC Genomics and Bioinformatics Units for technical support and scientific discussion. We particularly thank Fernando Martínez for his help solving numerous technical problems that arose during the development of this study. Finally, we would like to thank Simon Bartlett for his careful writing review of the manuscript.

Funding

This study was supported by grants from the European Union [CardioNeT-ITN-289600 and CardioNext-608027 to E.L-P.], the Spanish Ministry of Economy and Competitiveness [SAF2015-65722-R and SAF2012-31451 to E.L-P.], the Science, Innovation and Universities (MCIU) [RTI2018-102084-B-I00 to F.S.C], the Carlos III Institute of Health [CPII14/00027 to E.L-P. and RD012/0042/0066 to P.G-P. and E.L-P.], and the Madrid Regional Government [2010-BMD-2321 “Fibroteam” to E.L-P.]. The study also received support from the Plan Estatal de I + D + I 2013–2016 – European Regional Development Fund (ERDF) “A way of making Europe,” Spain. The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación (MCIN), and the Pro CNIC Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fátima Sánchez-Cabo or Enrique Lara-Pezzi.

Ethics declarations

Ethics Approval

All animal experiments were approved by the Ethics Committee for Animal Welfare of the CNIC and by the Regional Government of Madrid (PROEX 332–15, PROEX 177–17). No human studies were carried out by the authors of this article.

Conflict of Interest

The authors declare no competing interests.

Additional information

Associate Editor Paul J. R. Barton oversaw the review of this article

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martí-Gómez, C., Larrasa-Alonso, J., López-Olañeta, M. et al. Functional Impact and Regulation of Alternative Splicing in Mouse Heart Development and Disease. J. of Cardiovasc. Trans. Res. 15, 1239–1255 (2022). https://doi.org/10.1007/s12265-022-10244-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-022-10244-x

Keywords

Navigation