Skip to main content

Advertisement

Log in

Fibroblast-Secreted Phosphoprotein 1 Mediates Extracellular Matrix Deposition and Inhibits Smooth Muscle Cell Contractility in Marfan Syndrome Aortic Aneurysm

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Fibrillin 1 (Fbn1) mutation causes Marfan syndrome (MFS) with thoracic aortic aneurysm (TAA) as the main complication. The mechanisms for extracellular matrix (ECM) homeostasis disruption in MFS TAA are unclear. Here, we found ECM-related gene secreted phosphoprotein 1 (Spp1) increased in Fbn1C1041G/+ mice using transcriptome sequencing and a distinct fibroblast subcluster with Spp1 as the strongest marker was identified with analysis of the MFS mouse aortic single-cell sequencing dataset. Immunostaining confirmed elevated Spp1 in adventitial fibroblasts, and Spp1 might regulate fibroblast and smooth muscle cell (SMC) communication primarily through Itga8/Itgb1. Then, we observed Spp1 reduced contractile genes Acta2 and Tagln expression in SMCs and increased collagen expression in fibroblasts, which might contribute to TAA development. Finally, we also found elevated SPP1 plasma level was associated with an increased risk of TAA in patients. Therefore, SPP1 may serve as a biomarker and therapeutic target for TAA.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Fbn1:

Fibrillin-1

TAA:

Thoracic aortic aneurysm

ECM:

Extracellular matrix

Spp1:

Secreted phosphoprotein 1

SMC:

Smooth muscle cell

MFS:

Marfan syndrome

Itga8/Itgb1:

Integrin alpha 8/integrin beta 1

References

  1. Hernándiz, A., Zúñiga, A., Valera, F., Domingo, D., Ontoria-Oviedo, I., Marí, J. F., Román, J. A., Calvo, I., Insa, B., Gómez, R., et al. (2021). Genotype FBN1/phenotype relationship in a cohort of patients with Marfan syndrome. Clinical genetics, 99, 269–280. https://doi.org/10.1111/cge.13879

    Article  CAS  PubMed  Google Scholar 

  2. Vanem, T. T., Geiran, O. R., Krohg-Sørensen, K., Røe, C., Paus, B., & Rand-Hendriksen, S. (2018). Survival, causes of death, and cardiovascular events in patients with Marfan syndrome. Molecular genetics & genomic medicine, 6, 1114–1123. https://doi.org/10.1002/mgg3.489

    Article  CAS  Google Scholar 

  3. Cañadas, V., Vilacosta, I., Bruna, I., & Fuster, V. (2010). Marfan syndrome. Part 2: Treatment and management of patients. Nature reviews Cardiology, 7, 266–276. https://doi.org/10.1038/nrcardio.2010.31

    Article  CAS  PubMed  Google Scholar 

  4. Neptune, E. R., Frischmeyer, P. A., Arking, D. E., Myers, L., Bunton, T. E., Gayraud, B., Ramirez, F., Sakai, L. Y., & Dietz, H. C. (2003). Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nature genetics, 33, 407–411. https://doi.org/10.1038/ng1116

    Article  CAS  PubMed  Google Scholar 

  5. Ramirez, F., & Rifkin, D. B. (2003). Cell signaling events: A view from the matrix. Matrix biology : Journal of the International Society for Matrix Biology, 22, 101–107. https://doi.org/10.1016/s0945-053x(03)00002-7

    Article  CAS  Google Scholar 

  6. Ramachandra, C. J., Mehta, A., Guo, K. W., Wong, P., Tan, J. L., & Shim, W. (2015). Molecular pathogenesis of Marfan syndrome. International journal of cardiology, 187, 585–591. https://doi.org/10.1016/j.ijcard.2015.03.423

    Article  PubMed  Google Scholar 

  7. Daugherty, A., Manning, M. W., & Cassis, L. A. (2000). Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. The Journal of clinical investigation, 105, 1605–1612. https://doi.org/10.1172/jci7818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, T., Jiang, N., Zhang, S., Chen, Q., & Guo, Z. (2021). BAPN-induced rodent model of aortic dissecting aneurysm and related complications. Journal of thoracic disease, 13, 3643–3651. https://doi.org/10.21037/jtd-21-605

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ren, W., Liu, Y., Wang, X., Jia, L., Piao, C., Lan, F., & Du, J. (2016). β-Aminopropionitrile monofumarate induces thoracic aortic dissection in C57BL/6 mice. Scientific reports, 6, 28149. https://doi.org/10.1038/srep28149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pereira, L., Andrikopoulos, K., Tian, J., Lee, S. Y., Keene, D. R., Ono, R., Reinhardt, D. P., Sakai, L. Y., Biery, N. J., Bunton, T., et al. (1997). Targeting of the gene encoding fibrillin-1 recapitulates the vascular aspect of Marfan syndrome. Nature genetics, 17, 218–222. https://doi.org/10.1038/ng1097-218

    Article  CAS  PubMed  Google Scholar 

  11. Pereira, L., Lee, S. Y., Gayraud, B., Andrikopoulos, K., Shapiro, S. D., Bunton, T., Biery, N. J., Dietz, H. C., Sakai, L. Y., & Ramirez, F. (1999). Pathogenetic sequence for aneurysm revealed in mice underexpressing fibrillin-1. Proceedings of the National Academy of Sciences of the United States of America, 96, 3819–3823. https://doi.org/10.1073/pnas.96.7.3819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Judge, D. P., Biery, N. J., Keene, D. R., Geubtner, J., Myers, L., Huso, D. L., Sakai, L. Y., & Dietz, H. C. (2004). Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome. The Journal of clinical investigation, 114, 172–181. https://doi.org/10.1172/jci20641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, W. M., Liu, Y., Li, T. T., Piao, C. M., Liu, O., Liu, J. L., Qi, Y. F., Jia, L. X., & Du, J. (2016). Sustained activation of ADP/P2ry12 signaling induces SMC senescence contributing to thoracic aortic aneurysm/dissection. Journal of molecular and cellular cardiology, 99, 76–86. https://doi.org/10.1016/j.yjmcc.2016.08.008

    Article  CAS  PubMed  Google Scholar 

  14. Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology, 15, 550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, X., & Khalil, R. A. (2018). Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease. Advances in pharmacology (San Diego, Calif), 81, 241–330. https://doi.org/10.1016/bs.apha.2017.08.002

    Article  CAS  Google Scholar 

  16. Edwards, D. R., Handsley, M. M., & Pennington, C. J. (2008). The ADAM metalloproteinases. Molecular aspects of medicine, 29, 258–289. https://doi.org/10.1016/j.mam.2008.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kelwick, R., Desanlis, I., Wheeler, G. N., & Edwards, D. R. (2015). The ADAMTS (A disintegrin and metalloproteinase with thrombospondin motifs) family. Genome biology, 16, 113. https://doi.org/10.1186/s13059-015-0676-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Reiser, J., Adair, B., & Reinheckel, T. (2010). Specialized roles for cysteine cathepsins in health and disease. The Journal of clinical investigation, 120, 3421–3431. https://doi.org/10.1172/jci42918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pedroza, A. J., Tashima, Y., Shad, R., Cheng, P., Wirka, R., Churovich, S., Nakamura, K., Yokoyama, N., Cui, J. Z., Iosef, C., et al. (2020). Single-cell transcriptomic profiling of vascular smooth muscle cell phenotype modulation in Marfan syndrome aortic aneurysm. Arteriosclerosis, thrombosis, and vascular biology, 40, 2195–2211. https://doi.org/10.1161/atvbaha.120.314670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jin, S., Guerrero-Juarez, C. F., Zhang, L., Chang, I., Ramos, R., Kuan, C. H., Myung, P., Plikus, M. V., & Nie, Q. (2021). Inference and analysis of cell-cell communication using Cell Chat. Nature communications, 12, 1088. https://doi.org/10.1038/s41467-021-21246-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Golovina, V. A., & Blaustein, M. P. (2006). Preparation of primary cultured mesenteric artery smooth muscle cells for fluorescent imaging and physiological studies. Nature protocols, 1, 2681–2687. https://doi.org/10.1038/nprot.2006.425

    Article  CAS  PubMed  Google Scholar 

  22. Desbois, M., Udyavar, A. R., Ryner, L., Kozlowski, C., Guan, Y., Dürrbaum, M., Lu, S., Fortin, J. P., Koeppen, H., Ziai, J., et al. (2020). Integrated digital pathology and transcriptome analysis identifies molecular mediators of T-cell exclusion in ovarian cancer. Nature communications, 11, 5583. https://doi.org/10.1038/s41467-020-19408-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stenmark, K. R., Davie, N., Frid, M., Gerasimovskaya, E., & Das, M. (2006). Role of the adventitia in pulmonary vascular remodeling. Physiology (Bethesda, Md), 21, 134–145. https://doi.org/10.1152/physiol.00053.2005

    Article  CAS  Google Scholar 

  24. Tillie, R., van Kuijk, K., & Sluimer, J. C. (2020). Fibroblasts in atherosclerosis: Heterogeneous and plastic participants. Current opinion in lipidology, 31, 273–278. https://doi.org/10.1097/mol.0000000000000700

    Article  CAS  PubMed  Google Scholar 

  25. Holm, T. M., Habashi, J. P., Doyle, J. J., Bedja, D., Chen, Y., van Erp, C., Lindsay, M. E., Kim, D., Schoenhoff, F., Cohn, R. D., et al. (2011). Noncanonical TGFβ signaling contributes to aortic aneurysm progression in Marfan syndrome mice. Science (New York, NY), 332, 358–361. https://doi.org/10.1126/science.1192149

    Article  CAS  Google Scholar 

  26. Künzel, S. R., Hoffmann, M., Weber, S., Künzel, K., Kämmerer, S., Günscht, M., Klapproth, E., Rausch, J. S. E., Sadek, M., Kolanowski, T., et al. (2021). Diminished PLK2 induces cardiac fibrosis and promotes atrial fibrillation. Circulation research. https://doi.org/10.1161/circresaha.121.319425

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xie, Z., Singh, M., & Singh, K. (2004). ERK1/2 and JNKs, but not p38 kinase, are involved in reactive oxygen species-mediated induction of osteopontin gene expression by angiotensin II and interleukin-1beta in adult rat cardiac fibroblasts. Journal of cellular physiology, 198, 399–407. https://doi.org/10.1002/jcp.10419

    Article  CAS  PubMed  Google Scholar 

  28. Yu, H. W., Liu, Q. F., & Liu, G. N. (2010). Positive regulation of the Egr-1/osteopontin positive feedback loop in rat vascular smooth muscle cells by TGF-beta, ERK, JNK, and p38 MAPK signaling. Biochemical and biophysical research communications, 396, 451–456. https://doi.org/10.1016/j.bbrc.2010.04.115

    Article  CAS  PubMed  Google Scholar 

  29. Lin, Y. H., Huang, C. J., Chao, J. R., Chen, S. T., Lee, S. F., Yen, J. J., & Yang-Yen, H. F. (2000). Coupling of osteopontin and its cell surface receptor CD44 to the cell survival response elicited by interleukin-3 or granulocyte-macrophage colony-stimulating factor. Molecular and cellular biology, 20, 2734–2742. https://doi.org/10.1128/mcb.20.8.2734-2742.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barczyk, M., Carracedo, S., & Gullberg, D. (2010). Integrins. Cell and tissue research, 339, 269–280. https://doi.org/10.1007/s00441-009-0834-6

    Article  CAS  PubMed  Google Scholar 

  31. Müller, U., Wang, D., Denda, S., Meneses, J. J., Pedersen, R. A., & Reichardt, L. F. (1997). Integrin alpha8beta1 is critically important for epithelial-mesenchymal interactions during kidney morphogenesis. Cell, 88, 603–613. https://doi.org/10.1016/s0092-8674(00)81903-0

    Article  PubMed  PubMed Central  Google Scholar 

  32. Littlewood Evans, A., & Müller, U. (2000). Stereocilia defects in the sensory hair cells of the inner ear in mice deficient in integrin alpha8beta1. Nature genetics, 24, 424–428. https://doi.org/10.1038/74286

    Article  CAS  PubMed  Google Scholar 

  33. Lin, Z., Tian, X. Y., Huang, X. X., He, L. L., & Xu, F. (2019). microRNA-186 inhibition of PI3K-AKT pathway via SPP1 inhibits chondrocyte apoptosis in mice with osteoarthritis. Journal of cellular physiology, 234, 6042–6053. https://doi.org/10.1002/jcp.27225

    Article  CAS  PubMed  Google Scholar 

  34. Zeng, B., Zhou, M., Wu, H., & Xiong, Z. (2018). SPP1 promotes ovarian cancer progression via Integrin β1/FAK/AKT signaling pathway. OncoTargets and therapy, 11, 1333–1343. https://doi.org/10.2147/ott.s154215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zheng, Y. H., Tian, C., Meng, Y., Qin, Y. W., Du, Y. H., Du, J., & Li, H. H. (2012). Osteopontin stimulates autophagy via integrin/CD44 and p38 MAPK signaling pathways in vascular smooth muscle cells. Journal of cellular physiology, 227, 127–135. https://doi.org/10.1002/jcp.22709

    Article  CAS  PubMed  Google Scholar 

  36. Parsons, C. J., Takashima, M., & Rippe, R. A. (2007). Molecular mechanisms of hepatic fibrogenesis. Journal of gastroenterology and hepatology, 22(Suppl 1), S79-84. https://doi.org/10.1111/j.1440-1746.2006.04659.x

    Article  CAS  PubMed  Google Scholar 

  37. Babicheva A, Makino A, Yuan JX. (2021) mTOR signaling in pulmonary vascular disease: Pathogenic role and therapeutic target. International Journal of Molecular Sciences 22https://doi.org/10.3390/ijms22042144

  38. Wang, S. K., Green, L. A., Gutwein, A. R., Gupta, A. K., Babbey, C. M., Motaganahalli, R. L., Fajardo, A., & Murphy, M. P. (2018). Osteopontin may be a driver of abdominal aortic aneurysm formation. Journal of vascular surgery, 68, 22s–29s. https://doi.org/10.1016/j.jvs.2017.10.068

    Article  PubMed  Google Scholar 

  39. O’Brien, E. R., Garvin, M. R., Stewart, D. K., Hinohara, T., Simpson, J. B., Schwartz, S. M., & Giachelli, C. M. (1994). Osteopontin is synthesized by macrophage, smooth muscle, and endothelial cells in primary and restenotic human coronary atherosclerotic plaques. Arteriosclerosis and thrombosis: A journal of vascular biology, 14, 1648–1656. https://doi.org/10.1161/01.atv.14.10.1648

    Article  CAS  Google Scholar 

  40. Coskun S, Atalar E, Ozturk E, Yavuz B, Ozer N, Goker H, Ovünç K, Aksöyek S, Kes S, Sivri B et al. (2006) Plasma osteopontin levels are elevated in non-ST-segment elevation acute coronary syndromes. Journal of the National Medical Association 98:1746–1750.

  41. Wolak, T. (2014). Osteopontin - a multi-modal marker and mediator in atherosclerotic vascular disease. Atherosclerosis, 236, 327–337. https://doi.org/10.1016/j.atherosclerosis.2014.07.004

    Article  CAS  PubMed  Google Scholar 

  42. Lorenzen, J. M., Neunhöffer, H., David, S., Kielstein, J. T., Haller, H., & Fliser, D. (2010). Angiotensin II receptor blocker and statins lower elevated levels of osteopontin in essential hypertension–results from the EUTOPIA trial. Atherosclerosis, 209, 184–188. https://doi.org/10.1016/j.atherosclerosis.2009.09.009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Michael P. Fischbein for the aortic scRNA-seq data of Marfan Syndrome mice and Prof. Dongjin Wang for helping prepare the human aortic aneurysm and arterial tissue samples

Funding

This work was supported by the National Natural Science Foundation of China (81770250, 81930014, 81770470) and the Beijing Young Top-notch Talent Program (2017000021223ZK35).

Author information

Authors and Affiliations

Authors

Contributions

MZ conceptualized the study, performed experiments, carried out the analyses, and drafted the initial manuscript. YZ performed data analysis. ZZ, FQ, and SZ conducted samples and a part of data collection. SG and YuL supervised the analyses. JD and YaL participated in the study design, reviewed, and revised the manuscript.

Corresponding authors

Correspondence to Yan Liu or Jie Du.

Ethics declarations

Ethics Approval

All animal experiments were performed in accordance with the National Institutes of Health’s Guide for the Care and Use of Laboratory Animals, and the protocols were approved by the Institutional Animal Care and Use Committee of Capital Medical University. Use of human samples was approved by the Medical Ethical Committee of Beijing Anzhen Hospital, Capital Medical University and Affiliated Drum Tower Hospital of Nanjing University Medical School and in concordance with the principles outlined in the Declaration of Helsinki. Informed consent was obtained.

Conflict of Interest

The authors declare no competing interests.

Additional information

Associate Editor Junjie Xiao oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1543 KB)

Supplementary file2 (XLSX 11 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Zhu, Y., Zhou, Z. et al. Fibroblast-Secreted Phosphoprotein 1 Mediates Extracellular Matrix Deposition and Inhibits Smooth Muscle Cell Contractility in Marfan Syndrome Aortic Aneurysm. J. of Cardiovasc. Trans. Res. 15, 959–970 (2022). https://doi.org/10.1007/s12265-022-10239-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-022-10239-8

Keywords

Navigation