Skip to main content

Advertisement

Log in

The Mechanism Underlying the Regulation of LncRNA-ASLNC18810 Involved in the Abnormal Function of Vascular Endothelial Cell in Atherosclerosis: Its Function as a microRNA (miRNA) Sponge for miR-559

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Abnormal function of endothelial cells (ECs) is an important reason for vascular endothelial remodeling and atherosclerotic plaque formation in patients with atherosclerosis (AS). Here, we report for the first time that the vascular ECs with apoptosis resistance phenotype (ARECs) exist in peripheral blood of AS patients. Our research data showed that the switch of regulation modes between HIF-1α and Bax operated by lncRNA-ASLNC18810 is the direct cause for the formation of ARECs. When ASLNC18810 is low or missing, HIF-1α indirectly negatively regulates the Bax in post-transcription through HIF-1α/miR-559/Bax pathway which makes ECs acquire apoptosis resistance and form ARECs. The functional experiments results showed that ASLNC18810 could effectively eliminate the anti-apoptotic properties of ARECs by blocking the HIF-1α/miR559/Bax pathway and maintaining HIF-1α/Bax pathway. In a word, our study shows that ASLNC18810 has full potential to become a biological target for the prevention and treatment of atherosclerotic plaques by regulating ARECs.

Graphical abstract

ASLNC18810 was significantly upregulated in ECs compared to ARECs. With high level of ASLNC18810 in ECs, ASLNC18810 binds to miR-559 as a miRNA sponge and suppresses the inhibition effect of miR-559 on Bax protein, this direct positive transcriptional regulation between HIF-1α and Bax endows the apoptotic property in ECs induced by Ox-LDL. However, with low expression of ASLNC18810 in ARECs, the post-transcriptional regulation of Bax by miR-559 dominates and the indirect negative regulation between HIF-1α and Bax endows the anti-apoptotic property of ARECs. To sum up, low ASLNC18810 expression-mediated switching of HIF-1α/Bax pathway to HIF-1α/miR-559/Bax pathway is the internal reason for ECs to obtain apoptosis resistance and the formation of ARECs under the ox-LDL induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AS:

Atherosclerosis

ECs:

Endothelial cells

ARECs:

Apoptosis-resistant endothelial cells

Ox-LDL:

Oxidized low-density lipoprotein

LncRNA:

Long non-coding RNA

MiRNA:

MicroRNA

HIF-1α:

Hypoxia inducible factor-1α

Bax:

BCL2-associated X protein

HFD:

High-fat diet

RT-qPCR:

Quantitative reverse transcription PCR

GFP:

Green fluorescent protein

TFBS:

Transcription factor binding site

PI:

Propidium Iodide

MOI:

Multiplicity of infection

DMEM:

Dulbecco’s modification of Eagle’s medium

NC:

Negative control

IF:

Immunofluorescence

cDNA:

Complementary DNA

UTR:

Untranslated regions

EPCs:

Endothelial progenitor cells

References

  1. Gimbrone, M. A., Jr., & García-Cardeña, G. (2016). Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circulation Research, 118, 620–636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hinterdobler, J., Schunkert, H., Kessler, T., & Sager, H. B. (2021). Impact of acute and chronic psychosocial stress on vascular inflammation. Antioxidants & Redox Signaling, 35, 1531–1550.

    Article  CAS  Google Scholar 

  3. Roth, L., Van der Donckt, C., EminiVeseli, B., Van Dam, D., De Deyn, P. P., Martinet, W., Herman, A. G., & De Meyer, G. R. Y. (2019). Nitric oxide donor molsidomine favors features of atherosclerotic plaque stability and reduces myocardial infarction in mice. Vascular Pharmacology, 118–119, 106561.

    Article  PubMed  Google Scholar 

  4. Malekmohammad, K., Sewell, R. D. E., & Rafieian-Kopaei, M. (2019). Antioxidants and atherosclerosis: Mechanistic aspects. Biomolecules, 9, 301.

    Article  CAS  PubMed Central  Google Scholar 

  5. Masri, F. A., Xu, W., Comhair, S. A., Asosingh, K., Koo, M., Vasanji, A., Drazba, J., Anand-Apte, B., & Erzurum, S. C. (2007). Hyperproliferative apoptosis-resistant endothelial cells in idiopathic pulmonary arterial hypertension. American journal of physiology. Lung cellular and molecular physiology, 293, L548-554.

    Article  CAS  PubMed  Google Scholar 

  6. Sakao, S., Taraseviciene-Stewart, L., Lee, J. D., Wood, K., Cool, C. D., & Voelkel, N. F. (2005). Initial apoptosis is followed by increased proliferation of apoptosis-resistant endothelial cells. FASEB journal : Official publication of the Federation of American Societies for Experimental Biology, 19, 1178–1180.

    Article  CAS  Google Scholar 

  7. Liu, B., & Li, Y. (2015). Impact of conditional miRNA126 overexpression on apoptosis-resistant endothelial cell production. PloS one, 10, e0126661.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Camaré, C., Pucelle, M., Nègre-Salvayre, A., & Salvayre, R. (2017). Angiogenesis in the atherosclerotic plaque. Redox Biology, 12, 18–34.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fasolo, F., Di Gregoli, K., Maegdefessel, L., & Johnson, J. L. (2019). Non-coding RNAs in cardiovascular cell biology and atherosclerosis. Cardiovascular Research, 115, 1732–1756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Indolfi, C., Iaconetti, C., Gareri, C., Polimeni, A., & De Rosa, S. (2019). Non-coding RNAs in vascular remodeling and restenosis. Vascular Pharmacology, 114, 49–63.

    Article  CAS  PubMed  Google Scholar 

  11. Kumar, S., Williams, D., Sur, S., Wang, J. Y., & Jo, H. (2019). Role of flow-sensitive microRNAs and long noncoding RNAs in vascular dysfunction and atherosclerosis. Vascular Pharmacology, 114, 76–92.

    Article  CAS  PubMed  Google Scholar 

  12. Wang, Q., Yu, Y., Zhang, P., Chen, Y., Li, C., Chen, J., Wang, Y., & Li, Y. (2017). The crucial role of activin A/ALK4 pathway in the pathogenesis of Ang-II-induced atrial fibrosis and vulnerability to atrial fibrillation. Basic Research in Cardiology, 112, 47.

    Article  CAS  PubMed  Google Scholar 

  13. Bäck, M., Yurdagul, A., Jr., Tabas, I., Öörni, K., & Kovanen, P. T. (2019). Inflammation and its resolution in atherosclerosis: Mediators and therapeutic opportunities. Nature reviews. Cardiology, 16, 389–406.

    PubMed  Google Scholar 

  14. Fan, Z., Zhang, Y., Xiao, D., Ma, J., Liu, H., Shen, L., Zhang, M., & He, B. (2020). Long noncoding RNA UC.98 stabilizes atherosclerotic plaques by promoting the proliferation and adhesive capacity in murine aortic endothelial cells. Acta Biochimica et Biophysica Sinica, 52, 141–149.

    Article  CAS  PubMed  Google Scholar 

  15. Viktorinova, A. (2019). Potential clinical utility of macrophage colony-stimulating factor, monocyte chemotactic protein-1 and myeloperoxidase in predicting atherosclerotic plaque instability. Discovery Medicine, 28, 237–245.

    PubMed  Google Scholar 

  16. Kavurma, M. M., Rayner, K. J., & Karunakaran, D. (2017). The walking dead: Macrophage inflammation and death in atherosclerosis. Current Opinion in Lipidology, 28, 91–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, W., Liu, W., Fidler, T., Wang, Y., Tang, Y., Woods, B., Welch, C., Cai, B., Silvestre-Roig, C., Ai, D., Yang, Y. G., Hidalgo, A., Soehnlein, O., Tabas, I., Levine, R. L., Tall, A. R., & Wang, N. (2018). Macrophage inflammation, erythrophagocytosis, and accelerated atherosclerosis in Jak2 (V617F) mice. Circulation Research, 123, e35–e47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen, L., Yang, W., Guo, Y., Chen, W., Zheng, P., Zeng, J., & Tong, W. (2017). Exosomal lncRNA GAS5 regulates the apoptosis of macrophages and vascular endothelial cells in atherosclerosis. PloS One, 12, e0185406.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kattoor, A. J., Kanuri, S. H., & Mehta, J. L. (2019). Role of Ox-LDL and LOX-1 in atherogenesis. Current Medicinal Chemistry, 26, 1693–1700.

    Article  CAS  PubMed  Google Scholar 

  20. Cao, Y., Jiang, Z., Zeng, Z., Liu, Y., Gu, Y., Ji, Y., Zhao, Y., & Li, Y. (2016). Bcl-2 silencing attenuates hypoxia-induced apoptosis resistance in pulmonary microvascular endothelial cells. Apoptosis : An International Journal on Programmed Cell Death, 21, 69–84.

    Article  CAS  Google Scholar 

  21. Lévy, M., Maurey, C., Celermajer, D. S., Vouhé, P. R., Danel, C., Bonnet, D., & Israël-Biet, D. (2007). Impaired apoptosis of pulmonary endothelial cells is associated with intimal proliferation and irreversibility of pulmonary hypertension in congenital heart disease. Journal of the American College of Cardiology, 49, 803–810.

    Article  PubMed  Google Scholar 

  22. Lu, Y., Thavarajah, T., Gu, W., Cai, J., & Xu, Q. (2018). Impact of miRNA in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 38, e159–e170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, Z., Wang, R., Wang, K., & Liu, X. (2018). Upregulated long noncoding RNA Snhg1 promotes the angiogenesis of brain microvascular endothelial cells after oxygen-glucose deprivation treatment by targeting miR-199a. Canadian Journal of Physiology and Pharmacology, 96, 909–915.

    Article  CAS  PubMed  Google Scholar 

  24. Yu, X. H., Deng, W. Y., Chen, J. J., Xu, X. D., Liu, X. X., Chen, L., Shi, M. W., Liu, Q. X., Tao, M., & Ren, K. (2020). LncRNA kcnq1ot1 promotes lipid accumulation and accelerates atherosclerosis via functioning as a ceRNA through the miR-452-3p/HDAC3/ABCA1 axis. Cell Death & Disease, 11, 1043.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81900293), Shanghai Sailing Program (19YF1431800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Liu.

Ethics declarations

Ethics Approval

All human studies were carried out under informed consent, with data collection approved by the Ethics Committee of Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine. All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate institutional committees.

Conflict of Interest

The authors declare no competing interests.

Additional information

Associate Editor Junjie Xiao oversaw the review of this article

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Wan, YY., Li, N. et al. The Mechanism Underlying the Regulation of LncRNA-ASLNC18810 Involved in the Abnormal Function of Vascular Endothelial Cell in Atherosclerosis: Its Function as a microRNA (miRNA) Sponge for miR-559. J. of Cardiovasc. Trans. Res. 15, 1010–1023 (2022). https://doi.org/10.1007/s12265-022-10230-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-022-10230-3

Keywords

Navigation