Skip to main content
Log in

Customizable Angioplasty Balloon-Forming Machine: Towards Precision Medicine in Coronary Bifurcation Lesion Interventions

  • Methods Paper
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The ability to customize the size and shape of angioplasty balloons may be useful in many clinical and research applications of coronary and endovascular intervention. Fully customizable balloons are outside the reach of most researchers due to their prohibitive cost. A small-scale balloon-forming machine was developed to produce fully customizable balloons. This study describes the creation of this customizable balloon-forming machine and identifies the key components of manufacturing a patient-specific balloon. Using a standard balloon-shaped mold created with a novel application of 3D stereolithography-printed resin, 104 PET balloon formation tests were conducted. A statistical study was conducted in which molding temperature and inflation air pressure were independent variables ranging from 100 to 130 °C and from 3.7 to 6.8 atm, respectively. The criteria for balloon-forming success were defined; pressure and temperature combined were found to have a significant impact on the success (p = 0.011), with 120 °C and 4.76 atm resulting in the highest chance for success based on a regression model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CAD:

Coronary artery disease

BFM:

Balloon-forming machine

PET:

Polyethylene terephthalate

References

  1. Lassen, J., Burzotta, F., Banning, A., Lefèvre, T., Darremont, O., Hildick-Smith, D., et al. (2018). Percutaneous coronary intervention for the left main stem and other bifurcation lesions: 12th consensus document from the European Bifurcation Club. EuroIntervention, 13(13), https://doi.org/10.4244/EIJ-D-17-00622.

  2. Rizik, D. (2010). Treating bifurcation coronary artery disease. Reviews in Cardiovascular Medicine, 11(1), https://doi.org/10.3909/ricm11S1S0006.

  3. Park, T. K., Park, Y. H., Song, Y. B., Oh, J. H., Chun, W. J., Kang, G. H., et al. (2015). Long-term clinical outcomes of true and non-true bifurcation lesions according to Medina classification – Results from the COBIS (coronary bifurcation stent) II registry. Circulation Journal, 79(9), 1954–1962. https://doi.org/10.1253/circj.CJ-15-0264

    Article  PubMed  Google Scholar 

  4. Louvard, Y., Lefèvre, T., & Morice, M. (2004). Percutaneous coronary intervention for bifurcation coronary disease. Heart, 90, 713–722. https://doi.org/10.1136/hrt.2002.007682

  5. Dash, D. (2014). Recent perspective on coronary artery bifurcation interventions. Heart Asia, 6(1), 18–25.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Louvard, Y., Thomas, M., Dzavik, V., Hildick-Smith, D., Galassi, A. R., Pan, M., et al. (2008). Classification of coronary artery bifurcation lesions and treatments: Time for a consensus! Catheterization and Cardiovascular Interventions, 71(2), 175–183. https://doi.org/10.1002/ccd.21314

    Article  PubMed  Google Scholar 

  7. Antoniadis, A. P., Mortier, P., Kassab, G., Dubini, G., Foin, N., Murasato, Y., et al. (2015). Biomechanical modeling to improve coronary artery bifurcation stenting: Expert review document on techniques and clinical implementation. JACC: Cardiovascular Interventions, 8(10), 1281–1296 https://doi.org/10.1016/j.jcin.2015.06.015.

  8. Vorvick, L. J. (2019). Percutaneous transluminal coronary angioplasty (PTCA). Medline Plus. Retrieved 25 March, 2021, from https://medlineplus.gov/ency/anatomyvideos/000096.htm.

  9. Singh, J., Depta, J., & Patel, Y. (2017). Bifurcation lesions. The Cardiology Advisor. Retrieved 25 March, 2021, from https://www.thecardiologyadvisor.com/home/decision-support-in-medicine/cardiology/bifurcation-lesions/.

  10. Gwon, H. (2018). Understanding the coronary bifurcation stenting. Korean Circulation Journal, 48(6), 481–491. https://doi.org/10.4070/kcj.2018.0088

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hahn, J., Chun, W. J., Kim, J., Song, Y. B., Oh, J. H., Koo, B., et al. (2013). Predictors and outcomes of side branch occlusion after main vessel stenting in coronary bifurcation lesions: Results from the COBIS II registry (COronary BIfurcation Stenting). Journal of the American College of Cardiology, 62(18), 1654–1659. https://doi.org/10.1016/j.jacc.2013.07.041

    Article  PubMed  Google Scholar 

  12. Medrano-Gracia, P., Ormiston, J., Webster, M., Beier, S., Ellis, C., Wang, C., et al. (2017). A study of coronary bifurcation shape in a normal population. Journal of Cardiovascular Translational Research, 10(1), 82–90. https://doi.org/10.1007/s12265-016-9720-2

    Article  PubMed  Google Scholar 

  13. Ki, Y., Jung, J. H., Han, J., Hong, S., Cho, J. H., Gwon, H., et al. (2020). Clinical implications of bifurcation angles in left main bifurcation intervention using a two-stent technique. [Research Article]. Journal of Interventional Cardiology, 2020, https://doi.org/10.1155/2020/2475930.

  14. Suleiman, S., Coughlan, J., Touma, G., & Szirt, R. (2021). Contemporary management of isolated ostial side branch disease: An evidence based approach to Medina 001 bifurcations. Interventional Cardiology, 16(e06), https://doi.org/10.15420/icr.2020.30.

  15. Reifart, N., Vandormael, M., Krajcar, M., Göhring, S., Preusler, W., Schwarz, F., et al. (1997). Randomized comparison of angioplasty of complex coronary lesions at a single center: Excimer laser, rotational atherectomy, and balloon angioplasty comparison (ERBAC) study. Circulation, 96(1), 91–98. https://doi.org/10.1161/01.CIR.96.1.91

    Article  CAS  PubMed  Google Scholar 

  16. Noguchi, T., Miyazaki Md, S., Morii, I., Daikoku, S., Goto, Y., & Nonogi, H. (2000). Percutaneous transluminal coronary angioplasty of chronic total occlusions. Determinants of primary success and long-term clinical outcome. Catheterization and Cardiovascular Interventions: Official Journal of the Society for Cardiac Angiography & Interventions, 49(3), 258–264.

  17. Steigen, T. K., Maeng, M., Wiseth, R., Erglis, A., Kumsars, I., Narbute, I., et al. (2006). Randomized study on simple versus complex stenting of coronary artery bifurcation lesions: The Nordic bifurcation study. Circulation, 114(18), 1955–1961. https://doi.org/10.1161/CIRCULATIONAHA.106.664920

    Article  PubMed  Google Scholar 

  18. Sgueglia, G. A., & Chevalier, B. (2012). Kissing balloon inflation in percutaneous coronary interventions. JACC: Cardiovascular Interventions, 5(8), 803–811, https://doi.org/10.1016/j.jcin.2012.06.005.

  19. Elabbassi, W., & Al Nooryani, A. (2017). Skirt followed by trouser stenting technique: True anatomical preservation of coronary Y-shaped bifurcation lesions while using “vanishing” bioresorbable scaffolds: A report of two cases. Cardiovascular Revascularization Medicine, 18(4), 281–286. https://doi.org/10.1016/j.carrev.2016.10.007

    Article  PubMed  Google Scholar 

  20. Arokiaraj, M. C., De Santis, G., De Beule, M., & Palacios, I. F. (2016). A novel tram stent method in the treatment of coronary bifurcation lesions – Finite element study. PLoS ONE, 11(3), e0149838. https://doi.org/10.1371/journal.pone.0149838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Belardi, J. A., & Albertal, M. (2014). Self-Expanding dedicated bifurcation stent. Catheterization and Cardiovascular Interventions, 84(7), 1071–1072. https://doi.org/10.1002/ccd.25692

    Article  PubMed  Google Scholar 

  22. Chen, S., Sheiban, I., Xu, B., Jepson, N., Paiboon, C., Zhang, J., et al. (2014). Impact of the complexity of bifurcation lesions treated with drug-eluting stents. JACC: Cardiovascular Interventions, 7(11), 1266–1276 https://doi.org/10.1016/j.jcin.2014.04.026.

  23. Colombo, A., & Ruparelia, N. (2015). When you ask yourself the question “should I protect the side branch?”: The answer is “yes”∗. JACC: Cardiovascular Interventions, 8(1, Part A), 47–48 https://doi.org/10.1016/j.jcin.2014.11.007.

  24. Yamashita, T., Nishida, T., Adamian, M. G., Briguori, C., Vaghetti, M., Corvaja, N., et al. (2000). Bifurcation lesions: Two stents versus one stent—Immediate and follow-up results. Journal of the American College of Cardiology, 35(5), 1145–1151. https://doi.org/10.1016/S0735-1097(00)00534-9

    Article  CAS  PubMed  Google Scholar 

  25. Ormiston, J., Webster, M., El-Jack, S., McNab, D., & Simpson Plaumann, S. (2007). The AST petal dedicated bifurcation stent: First-in-human experience. Catheterization and Cardiovascular Interventions, 70(3), 335–340. https://doi.org/10.1002/ccd.21206

    Article  PubMed  Google Scholar 

  26. Gil, R., Vassilev, D., & Bil, J. (2013). Dedicated bifurcation drug-eluting stent BiOSS - A novel device for coronary bifurcation treatment. Interventional Cardiology Review, 8(1), 19–22 https://doi.org/10.15420/icr.2013.8.1.19.

  27. Morlacchi, S., Chiastra, C., Cutri, E., Zunino, P., Burzotta, F., Formaggia, L., et al. (2014). Stent deformation, physical stress, and drug elution obtained with provisional stenting, conventional culotte and Tryton-based culotte to treat bifurcations: A virtual simulation study. EuroIntervention, 9, 1441–1453. https://doi.org/10.4244/EIJV9I12A242

    Article  PubMed  Google Scholar 

  28. Patel, K. A., Patel, S. R., & Zimmerman, S. A. (1999). Method for making medical balloon catheter. In S. United (Ed.): Medtronic Inc.

  29. Jhun, C., Rosenberg, G., & Waybill, P. (2015). Effect of angioplasty balloon compliance on stenotic blood vessel stress. J Medical Devices, 9(3), https://doi.org/10.1115/1.4030575.

  30. Sauerteig, K., & Giese, M. (1998). The effect of extrusion and blow molding parameters on angioplasty balloon production. https://www.mddionline.com/news/effect-extrusion-and-blow-molding-parameters-angioplasty-balloon-production. Accessed 10 November

  31. Chen, Y. (2008). Modeling and cycle-to-cycle control of the angioplasty balloon forming process. McGill University (Canada), Canada.

    Google Scholar 

  32. Kucklick, T. R. (2012). The medical device r&d handbook. Baton Rouge, United States: Taylor & Francis Group.

  33. How products are made: An illustrated guide to product manufacturing (2001). (Vol. 6, epdf.pub). Farmington Hills, United States: Gale Group.

  34. Klein, P. (2009). Fundamentals of plastics thermoforming. Synthesis Lectures on Materials Engineering, 1(1), 1–97. https://doi.org/10.2200/S00184ED1V01Y200904MRE001

    Article  Google Scholar 

  35. Holman, T., Hoang, N. H., Dunn, R., Schewe, S., Silberg, K., Parsons, D., et al. (2008). Process for forming medical device balloons. In U. S. P. a. T. Office (Ed.), (B29C 49/64 ed., Vol. B2). United States: Boston Scientific Scimed, Inc.

  36. McAllister, E. W. (2013). Pipeline rules of thumb handbook: A manual of quick, accurate solutions to everyday pipeline engineering problems. Saint Louis, United States: Elsevier Science & Technology.

  37. Li, Z., Xu, L. X., Lu, C. L., Liu, G. Z., & Li, X. Y. (2014). Internal structure changes of nylon 12 in balloon forming process. Applied Mechanics and Materials; Zurich, 528, 153–161 https://doi.org/10.4028/www.scientific.net/AMM.528.153.

  38. Yanes, D., & Mabry, E. (2012). Balloon forming innovations improve quality and reduce cost. Medical Design Technology, 16(8), 16–19.

    Google Scholar 

  39. Athanasiou, L., Rigas, G., Sakellarios, A., Exarchos, T., Siogkas, P., Bourantas, C., et al. (2016). Three-dimensional reconstruction of coronary arteries and plaque morphology using CT angiography - Comparison and registration with IVUS. BMC Medical Imaging. https://doi.org/10.1186/s12880-016-0111-6

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lim, F., Owens, T., Sridharan, S., & Le Long, C. (2006). Method of making a low profile balloon. In U. S. P. a. T. Office (Ed.), (B29C 49/22 ed., Vol. US 7,147,817 B1). United States: Abbott Cardiovascular Systems Inc.

  41. Laughlin, M. E., Stephens, S. E., Hestekin, J. A., & Jensen, M. O. (2021). Development of custom wall-less cardiovascular flow phantoms with tissue mimicking gel. Cardiovascular Engineering and Technology. https://doi.org/10.1007/s13239-021-00546-7

    Article  PubMed  PubMed Central  Google Scholar 

  42. BW-TEC AG.(2014, March 27). BW-TEC Balloon moulding machine 503. (0:15 ed.). Youtube. Retrieved 2021, November 20, from https://www.youtube.com/watch?v=q1poHbYTghg&t=16s

Download references

Acknowledgements

Special acknowledgement to the American Heart Association in supporting the funding for this research.

Funding

This study was funded by the American Heart Association grant # 18AIREA33960590.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten O. Jensen.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Associate Editor Adrian Chester oversaw the review of this article .

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmer, K.M., Bean, M.J., Uretsky, B.F. et al. Customizable Angioplasty Balloon-Forming Machine: Towards Precision Medicine in Coronary Bifurcation Lesion Interventions. J. of Cardiovasc. Trans. Res. 15, 1119–1128 (2022). https://doi.org/10.1007/s12265-022-10229-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-022-10229-w

Keywords

Navigation