Skip to main content
Log in

Selective Enhancement of Swine Myocardium with a Novel Ultrasound Enhancing Agent During Transthoracic Echocardiography

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Ultrasound enhancing agents are approved to delineate the endocardial border and opacify the left ventricle cavity (LVC). We present a nested phase change agent (NPCA) designed to enable selective myocardial enhancement without enhancing the LVC by employing a dual-activation mechanism dependent on sufficient ultrasound intensity and the microenvironment of the myocardium. Swine received bolus injections of NPCA while echocardiograms were collected and processed to determine background-subtracted acoustic intensities (AI) in the LVC and septal myocardium. At mechanical index (MI) ≥ 0.8, the NPCA enhanced the myocardium selectively (p < 0.001) while the LVC remained at baseline AI. A 5-mL bolus of NPCA enhanced swine myocardium and enhancement persisted for > 5 min at 1.4 MI, while hemodynamics and EKG remained normal. Our findings demonstrate that the NPCA enhances swine myocardium selectively without enhancing the LVC. The NPCA could have utility for functional and structural echocardiographic studies with clinical ultrasound using standard settings.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

LVC:

Left ventricle cavity

NPCA:

Nested phase change agent

MI:

Mechanical index

AI:

Acoustic intensity

SER:

Selective enhancement ratio

EMA:

European Medicines Agency

FDA:

Food & Drug Administration

MPI:

Myocardial perfusion imaging

cMRI:

Cardiac magnetic resonance imaging

PET:

Positron emission tomography

SPECT:

Single-photon emission computed tomography

UEA:

Ultrasound enhancing agent

PCA:

Phase change agent

References

  1. DeMaria, A. N., Cotter, B., & Ohmori, K. (1998). Myocardial contrast echocardiography: Too much, too soon? Journal of the American College of Cardiology, 32(5), 1270–1271. https://doi.org/10.1016/S0735-1097(98)00415-X

    Article  PubMed  CAS  Google Scholar 

  2. Thomas, J. D. (2013). Myocardial contrast echocardiography perfusion imaging: Still waiting after all these years. Journal of the American College of Cardiology, 62(15), 1362–1364. https://doi.org/10.1016/j.jacc.2013.05.053

    Article  PubMed  Google Scholar 

  3. Kaul, S. (2010). Myocardial contrast echocardiography. A wondrous journey! JACC: Cardiovascular Imaging, 3(2), 212–218. https://doi.org/10.1016/j.jcmg.2009.11.003

  4. Porter, T. R., & Xie, F. (2010). Myocardial perfusion imaging with contrast ultrasound. JACC: Cardiovascular imaging, 3(2), 176–187. https://doi.org/10.1016/j.jcmg.2009.09.024

  5. Davidson, B. P., Arthur, S., & Doyle, C. (2019). Making the case for ischemia : Using myocardial contrast echocardiography to understand when the (circumstantial) evidence doesn’t add up. Journal of the American Society of Echocardiography, 32(9), 1102–1104. https://doi.org/10.1016/j.echo.2019.07.009

    Article  PubMed  Google Scholar 

  6. Gramiak, R., Shah, P. M., & Kramer, D. H. (1969). Ultrasound cardiography: Contrast studies in anatomy and function. Radiology, 92(5), 939–948. https://doi.org/10.1148/92.5.939

    Article  PubMed  CAS  Google Scholar 

  7. Porter, T. R., Mulvagh, S. L., Abdelmoneim, S. S., Becher, H., Belcik, J. T., Bierig, M., & Villanueva, F. (2018). Clinical applications of ultrasonic enhancing agents in echocardiography: 2018 American Society of Echocardiography Guidelines Update. Journal of the American Society of Echocardiography, 31(3), 241–274. https://doi.org/10.1016/j.echo.2017.11.013

    Article  PubMed  Google Scholar 

  8. Leighton, T. G. (2005). The Acoustic Bubble. The Journal of the Acoustical Society of America (Vol. 96). Harcourt Brace & Company, Publishers. https://doi.org/10.1121/1.410082

  9. Imaging, L. M. (2011). Definity: Perflutren lipid microspheres. U.S. Food and Drug Administration. Retrieved from https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/021064s017lbl.pdf

  10. Porter, T. R., & Xie, F. (1995). Transient myocardial contrast after initial exposure to diagnostic ultrasound pressures with minute doses of intravenously injected microbubbles. Circulation, 92(9), 2391–2395. https://doi.org/10.1161/01.CIR.92.9.2391

    Article  PubMed  CAS  Google Scholar 

  11. Porter, T. R., Li, S., Kricsfeld, D., & Armbruster, R. W. (1997). Detection of myocardial perfusion in multiple echocardiographic windows with one intravenous injection of microtubules using transient response second harmonic imaging. Journal of the American College of Cardiology, 29(4), 791–799. https://doi.org/10.1016/S0735-1097(96)00575-X

    Article  PubMed  CAS  Google Scholar 

  12. Senior, R., Moreo, A., Gaibazzi, N., Agati, L., Tiemann, K., Shivalkar, B., & Kasprzak, J. D. (2013). Comparison of sulfur hexafluoride microbubble (SonoVue)-enhanced myocardial contrast echocardiography with gated single-photon emission computed tomography for detection of significant coronary artery disease: A large European multicenter study. Journal of the American College of Cardiology, 62(15), 1353–1361. https://doi.org/10.1016/j.jacc.2013.04.082

    Article  PubMed  CAS  Google Scholar 

  13. Wei, K., Crouse, L., Weiss, J., Villanueva, F., Schiller, N. B., Naqvi, T. Z., & DeMaria, A. (2003). Comparison of usefulness of dipyridamole stress myocardial contrast echocardiography to technetium-99m sestamibi single-photon emission computed tomography for detection of coronary artery disease (PB127 multicenter phase 2 trial results). American Journal of Cardiology, 91(11), 1293–1298. https://doi.org/10.1016/S0002-9149(03)00316-3

    Article  PubMed  Google Scholar 

  14. Marwick, T. H., Brunken, R., Meland, N., Brochet, E., Baer, F. M., Binder, T., & Lindvall, K. (1998). Accuracy and feasibility of contrast echocardiography for detection of perfusion defects in routine practice. Journal of the American College of Cardiology, 32(5), 1260–1269. https://doi.org/10.1016/S0735-1097(98)00373-8

    Article  PubMed  CAS  Google Scholar 

  15. Senior, R., Monaghan, M., Main, M. L., Zamorano, J. L., Tiemann, K., Agati, L., & Picard, M. H. (2009). Detection of coronary artery disease with perfusion stress echocardiography using a novel ultrasound imaging agent: Two phase 3 international trials in comparison with radionuclide perfusion imaging. European Journal of Echocardiography, 10(1), 26–35. https://doi.org/10.1093/ejechocard/jen321

    Article  PubMed  Google Scholar 

  16. Choudhury, S. A., Xie, F., Kutty, S., Lof, J., Stolze, E., & Porter, T. R. (2018). Selective infarct zone imaging with intravenous acoustically activated droplets. PLoS ONE, 13(12), 1–15. https://doi.org/10.1371/journal.pone.0207486

    Article  Google Scholar 

  17. Choudhury, S. A., Xie, F., Dayton, P. A., & Porter, T. R. (2016). Acoustic behavior of a reactivated, commercially available ultrasound contrast agent. Journal of the American Society of Echocardiography, 30(2), 1–9. https://doi.org/10.1016/j.echo.2016.10.015

    Article  Google Scholar 

  18. Cimorelli, M., Angel, B., Fafarman, A., Kohut, A., Andrien, B., Barrett, K., & Wrenn, S. (2018). Introducing a nested phase change agent with an acoustic response that depends on electric field: A candidate for myocardial perfusion imaging and drug delivery. Applied Acoustics, 138(February), 9–17. https://doi.org/10.1016/j.apacoust.2018.03.028

    Article  Google Scholar 

  19. Cimorelli, M., Flynn, M. A., Angel, B., Reimold, E., Fafarman, A., Huneke, R., & Wrenn, S. (2020). A voltage-sensitive ultrasound enhancing agent for myocardial perfusion imaging in a rat model. Ultrasound in Medicine and Biology, 46(9), 2388–2399. https://doi.org/10.1016/j.ultrasmedbio.2020.05.015

    Article  PubMed  Google Scholar 

  20. Cimorelli, M., Flynn, M. A., Angel, B., Fafarman, A., Kohut, A., & Wrenn, S. (2020). An ultrasound enhancing agent with nonlinear acoustic activity that depends on the presence of an electric field. Ultrasound in Medicine and Biology, 46(9), 2370–2387. https://doi.org/10.1016/j.ultrasmedbio.2020.04.038

    Article  PubMed  Google Scholar 

  21. Porter, T. R., Arena, C., Sayyed, S., Lof, J., High, R. R., Xie, F., & Dayton, P. A. (2016). Targeted transthoracic acoustic activation of systemically administered nanodroplets to detect myocardial perfusion abnormalities. Circulation: Cardiovascular Imaging, 9(1), 1–9. https://doi.org/10.1161/CIRCIMAGING.115.003770

  22. Seol, S. H., Davidson, B. P., Belcik, J. T., Mott, B. H., Goodman, R. M., Ammi, A., & Lindner, J. R. (2015). Real-time contrast ultrasound muscle perfusion imaging with intermediate-power imaging coupled with acoustically durable microbubbles. Journal of the American Society of Echocardiography, 28(6), 718-726.e2. https://doi.org/10.1016/j.echo.2015.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  23. Matsunaga, T. O., Sheeran, P. S., Luois, S., Streeter, J. E., Mullin, L. B., Banerjee, B., & Dayton, P. A. (2012). Phase-change nanoparticles using highly volatile perfluorocarbons: Toward a platform for extravascular ultrasound imaging. Theranostics, 2(12), 1185–1198. https://doi.org/10.7150/thno.4846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Sheeran, P. S., & Dayton, P. A. (2012). Phase-change contrast agents for imaging and therapy. Current pharmaceutical design, 18(15), 2152–2165. https://doi.org/10.2174/138161212800099883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Porter, T. R., Xie, F., Lof, J., Powers, J., Vignon, F., Shi, W., & White, M. (2017). The thrombolytic effect of diagnostic ultrasound–induced microbubble cavitation in acute carotid thromboembolism. Investigative Radiology, 52(8), 477–481. https://doi.org/10.1097/RLI.0000000000000369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. du Sert, N. P., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., … Würbel, H. (2020). Reporting animal research: Explanation and elaboration for the arrive guidelines 2.0. PLoS Biology (Vol. 18). https://doi.org/10.1371/journal.pbio.3000411

  27. Crisóstomo, V., Sun, F., Maynar, M., Báez-Díaz, C., Blanco, V., Garcia-Lindo, M., & Sánchez-Margallo, F. M. (2016). Common swine models of cardiovascular disease for research and training. Lab Animal, 45(2), 67–74. https://doi.org/10.1038/laban.935

    Article  PubMed  Google Scholar 

  28. Wallace, N., Dicker, S., Lewin, P., & Wrenn, S. P. (2014). Influence of nesting shell size on brightness longevity and resistance to ultrasound-induced dissolution during enhanced B-mode contrast imaging. Ultrasonics, 54(8), 2099–2108. https://doi.org/10.1016/j.ultras.2014.06.019

    Article  PubMed  CAS  Google Scholar 

  29. Beppu, S., Matsuda, H., Shishido, T., Matsumura, M., & Miyatake, K. (1997). Prolonged myocardial contrast echocardiography via peripheral venous administration of QW3600 Injection (EchoGen®): Its efficacy and side effects. Journal of the American Society of Echocardiography, 10(1), 11–24. https://doi.org/10.1016/S0894-7317(97)80028-4

    Article  PubMed  CAS  Google Scholar 

  30. Øistensen, J., Hede, R., Myreng, Y., Ege, T., & Holtz, E. (1992). Intravenous injection of AlbunexR microspheres causes thromboxane mediated pulmonary hypertension in pigs, but not in monkeys or rabbits. Acta Physiologica Scandinavica, 144(3), 307–315. https://doi.org/10.1111/j.1748-1716.1992.tb09299.x

    Article  Google Scholar 

Download references

Funding

This study was supported by the Coulter-Drexel Translational Research Partnership Program and the Department of Education (Award No. P200 A150240).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Cimorelli or Steven Wrenn.

Ethics declarations

Ethics Approval and Consent to Participate

No human studies were carried out by the authors for this article.

Competing Interests

Drs. Angel, Cimorelli, Fafarman, Kohut, and Wrenn are co-inventors on an issued patent covering the voltage-sensitive nesting architecture described in this study. Drs. Angel, Cimorelli, Fafarman, Kohut, and Wrenn and Mr. Flynn are co-founders and own equity of Sonnest, Inc. Mr. Andrien, Dr. Cimorelli, and Mr. Flynn are employees at Sonnest, Inc., while Drs. Angel, Kohut, and Wrenn are consultants at Sonnest, Inc. All other authors declare no conflicts of interest.

Additional information

Communicated by Associate Editor Paul Jozine ter Maaten oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 75 KB)

Supplemental video 2 Demonstrationof image processing to quantify acoustic intensity in regions of interest. The Brightness (B)-mode videos are loaded into custom software that was developed in Python 3.8.0 to quantify the average brightness in arbitrary units (a.u.) in the left ventricle cavity (LVC, red) and the septal myocardium (green) by digitizing the pixels from 0 (black) to 255 (white) in an ellipse with a predefined area of 2,000 pixels while tracking their movement throughout the cardiac cycle. The two ellipses are repositioned frame by frame to remain within the LVC and septal myocardium. The average brightness is determined for each 15-second increment and is shown above. (MP4 9088 KB)

Supplemental video 3 (MP4 34423 KB)

Supplementary file4 (DOCX 29 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cimorelli, M., Flynn, M.A., Angel, B. et al. Selective Enhancement of Swine Myocardium with a Novel Ultrasound Enhancing Agent During Transthoracic Echocardiography. J. of Cardiovasc. Trans. Res. 15, 722–729 (2022). https://doi.org/10.1007/s12265-022-10207-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-022-10207-2

Keywords

Navigation