Skip to main content
Log in

Magnetic Resonance Imaging for Cerebral Micro-embolizations During Minimally Invasive Mitral Valve Surgery

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The role of aortic clamping techniques on the occurrence of neurological complications after right mini-thoracotomy mitral valve surgery is still debated. Brain injuries can occur also as silent cerebral micro-embolizations (SCM), which have been linked to significant deficits in physical and cognitive functions. Aims of this study are to evaluate the overall rate of SCM and to compare endoaortic clamp (EAC) with trans-thoracic clamp (TTC). Patients enrolled underwent a pre-operative, a post-operative, and a follow-up MRI. Forty-three patients were enrolled; EAC was adopted in 21 patients, TTC in 22 patients. Post-operative SCM were reported in 12 cases (27.9%). No differences between the 2 groups were highlighted (23.8% SCM in the EAC group versus 31.8% in the TTC). MRI analysis showed post-operative SCM in nearly 30% of selected patients after right mini-thoracotomy mitral valve surgery. Subgroup analysis on different types of aortic clamping showed comparable results.

Clinical Relevance

The rate of SCM reported in the present study on patients undergoing minimally invasive MVS and RAP is consistent with data in the literature on patients undergoing cardiac surgery through median sternotomy and antegrade arterial perfusion. Moreover, no differences were reported between EAC and TTC: both the aortic clamping techniques are safe, and the choice of the surgical setting to adopt can be really done according to the patient’s characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

SCM:

Silent cerebral micro-embolizations

MVS:

Mitral valve surgery

RAP:

Retrograde arterial perfusion

EAC:

Endoaortic clamp

TTC:

Trans-thoracic clamp

MRI:

Magnetic resonance imaging

3 T:

3 Tesla

DWI:

Diffusion-weighted imaging

DTI:

Diffusion tensor imaging

References

  1. Newman, M. F., Grocott, H. P., Mathew, J. P., et al. (2001). Report of the substudy assessing the impact of neurocognitive function on quality of life 5 years after cardiac surgery. Stroke, 32, 2874–2881.

    Article  PubMed  CAS  Google Scholar 

  2. Newman, M. F., Mathew, J. P., Grocott, H. P., et al. (2006). Central nervous system injury associated with cardiac surgery. Lancet, 368, 694–703.

    Article  PubMed  Google Scholar 

  3. Taggart, D. P., & Westaby, S. (2001). Neurological and cognitive disorders after coronary artery bypass grafting. Current Opinion in Cardiology, 16, 271–276.

    Article  PubMed  CAS  Google Scholar 

  4. Taggart, D. P., Browne, S. M., Wade, D. T., & Halligan, P. W. (2003). Neuroprotection during cardiac surgery: A randomised trial of a platelet activating factor antagonist. Heart, 89, 897–900.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Fearn, S. J., Pole, R., Burgess, S. G., Ray, T. L., Hooper, C. N., & McCollum, C. N. (2001). Cerebral embolization during modern cardiopulmonary bypass. European Journal of Cardio-Thoracic Surgery, 20, 1163–1167.

    Article  PubMed  CAS  Google Scholar 

  6. Gammie, J. S., Sheng, S., Griffith, B. P., et al. (2009). Trends in mitral valve surgery in the United States: Results from the Society of Thoracic Surgeons Adult Cardiac Database. Annals of Thoracic Surgery, 87, 1431–1439.

    Article  PubMed  Google Scholar 

  7. Selnes, O. A., Goldsborough, M. A., Borowicz, L. M., & McKhann, G. M. (1999). Neurobehavioural sequelae of cardiopulmonary bypass. Lancet, 353, 1601–1606.

    Article  PubMed  CAS  Google Scholar 

  8. Stolz, E., Gerriets, T., Kluge, A., Klovekorn, W. P., Kaps, M., & Bachmann, G. (2004). Diffusion-weighted magnetic resonance imaging and neurobiochemical markers after aortic valve replacement: Implications for future neuroprotective trials? Stroke, 35, 888–892.

    Article  PubMed  Google Scholar 

  9. Indja, B., Woldendorp, K., Vallely, M. P., & Grieve, S. M. (2019). Silent brain infarcts following cardiac procedures: A systematic review and meta-analysis. J Am Heart Assoc, 8, e010920.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vermeer, S. E., Hollander, M., van Dijk, E. J., et al. (2003). Silent brain infarcts and white matter lesions increase stroke risk in the general population: The Rotterdam Scan Study. Stroke, 34, 1126–1129.

    Article  PubMed  Google Scholar 

  11. Barbero, C., Marchetto, G., Ricci, D., et al. (2016). Minimal access mitral valve surgery: Impact of tailored strategies on early outcome. Annals of Thoracic Surgery, 102, 1989–1994.

    Article  PubMed  Google Scholar 

  12. Casselman, F., Aramendi, J., Bentala, M., et al. (2015). Endoaortic clamping does not increase the risk of stroke in minimal access mitral valve surgery: A multicenter experience. Annals of Thoracic Surgery, 100, 1334–1339.

    Article  PubMed  Google Scholar 

  13. Barbero, C., Krakor, R., Bentala, M., et al. (2018). Comparison of endoaortic and trans-thoracic aortic clamping in less-invasive mitral valve surgery. Annals of Thoracic Surgery, 105, 794–798.

    Article  PubMed  Google Scholar 

  14. Barbero, C., Marchetto, G., Ricci, D., & Rinaldi, M. (2017). Temporary neurological dysfunction after minimal invasive mitral valve surgery: Influence of type of perfusion and aortic clamping technique. Annals of Thoracic Surgery, 103(2), 691–692.

    Article  PubMed  Google Scholar 

  15. Grossi, E. A., Loulmet, D. F., Schwartz, C. F., et al. (2011). Minimally invasive valve surgery with antegrade perfusion strategy is not associated with increased neurologic complications. Annals of Thoracic Surgery, 92, 1346–1350.

    Article  PubMed  Google Scholar 

  16. Ghoreishi, M., Thourani, V. H., Badhwar, V., et al. (2021). Less-invasive aortic valve replacement: Trends and outcomes from the Society of Thoracic Surgeons database. Annals of Thoracic Surgery, 111, 1216–1224.

    Article  PubMed  Google Scholar 

  17. Je, H. G., Min, H. J., Chee-Hoon, L., et al. (2019). Incidence and distribution of cerebral embolism after cardiac surgery according to the systemic perfusion strategy-A diffusion-weighted magnetic resonance imaging study. Circulation J, 84, 54–60.

    Article  Google Scholar 

  18. Barbero, C., Ricci, D., El Qarra, S., Marchetto, G., Boffini, M., & Rinaldi, M. (2015). Aortic cannulation system for minimally invasive mitral valve surgery. Journal of Thoracic and Cardiovascular Surgery, 149, 1669–1672.

    Article  PubMed  Google Scholar 

  19. Gammie, J. S., Zhao, Y., Peterson, E. D., et al. (2010). Less-invasive mitral valve operations: Trends and outcomes from the society of thoracic surgeons adult cardiac surgery database. Annals of Thoracic Surgery, 90, 1401–1410.

    Article  PubMed  Google Scholar 

  20. Grant, S. W., Hickey, G. L., Modi, P., et al. (2019). Propensity-matched analysis of minimally invasive approach versus sternotomy for mitral valve surgery. Heart, 105, 783–789.

    Article  PubMed  Google Scholar 

  21. Paparella, D., Fattouch, K., Moscarelli, M., et al. (2020). Current trends in mitral valve surgery: A multicenter national comparison between full-sternotomy and minimally-invasive approach. International Journal of Cardiology, 306, 147–151.

    Article  PubMed  Google Scholar 

  22. Mazine, A., Pellerin, M., Lebon, J. S., Dionne, P. O., Jeanmart, H., & Bouchard, D. (2013). Minimally invasive mitral valve surgery: Influence of aortic clamping technique on early outcomes. Annals of Thoracic Surgery, 96(6), 2116–2122.

    Article  PubMed  Google Scholar 

  23. Nishimura, R. A., Otto, C. M., Bonow, R. O., Carabello, B. A., et al. (2017). 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 135, 1159–1195.

    Article  Google Scholar 

  24. Nakamura, H., Yamada, K., Kizu, O., et al. (2005). Effect of thin-section diffusion-weighted MR imaging on stroke diagnosis. AJNR. American Journal of Neuroradiology, 26, 560–565.

    PubMed  PubMed Central  Google Scholar 

  25. Mullins, M. E., Schaefer, P. W., Sorensen, A. G., et al. (2002). CT and conventional and diffusion-weighted MR imaging in acute stroke: Study in 691 patients at presentation to the emergency department. Radiology, 224, 353–360.

    Article  PubMed  Google Scholar 

  26. Ozsunar, Y., & Sorensen, A. G. (2000). Diffusion- and perfusion-weighted magnetic resonance imaging in human acute ischemic stroke: Technical considerations. Topics in Magnetic Resonance Imaging, 11, 259–272.

    Article  PubMed  CAS  Google Scholar 

  27. Barbero, C., Ricci, D., Cura Stura, E., et al. (2017). Magnetic resonance imaging for cerebral lesions during minimal invasive mitral valve surgery: Study protocol for a randomized controlled trial. Trials, 17, 76.

    Article  Google Scholar 

  28. Barbero, C., Marchetto, G., Ricci, D., et al. (2019). Steps forward in minimal invasive cardiac surgery: 10-year experience. Annals of Thoracic Surgery, 108(6), 1822–1829.

    Article  PubMed  Google Scholar 

  29. Falk, V., Cheng, D. C., Martin, J., et al. (2011). Minimally invasive versus open mitral valve surgery: A consensus statement of the International Society of Minimally Invasive Coronary Surgery (ISMICS) 2010. Innovations (Phila), 6(2), 66–76.

    Article  Google Scholar 

  30. Knipp, S. C., Matatko, N., Schlamann, M., et al. (2005). Small ischemic brain lesions after cardiac valve replacement detected by diffusion-weighted magnetic resonance imaging: Relation to neurocognitive function. European Journal of Cardio-Thoracic Surgery, 28, 88–96.

    Article  PubMed  Google Scholar 

  31. Barber, P. A., Hach, S., Tippett, L. J., Ross, L., Merry, A. F., & Milsom, P. (2008). Cerebral ischemic lesions on diffusion-weighted imaging are associated with neurocognitive decline after cardiac surgery. Stroke, 39, 1427–1433.

    Article  PubMed  CAS  Google Scholar 

  32. Fiebach, J. B., Schellinger, P. D., Jansen, O., et al. (2002). CT and diffusion-weighted MR imaging in randomized order: Diffusion-weighted imaging results in higher accuracy and lower interrater variability in the diagnosis of hyperacute ischemic stroke. Stroke, 33, 2206–2210.

    Article  PubMed  CAS  Google Scholar 

  33. Lansberg, M. G., Albers, G. W., Beaulieu, C., & Marks, M. P. (2000). Comparison of diffusion-weighted MRI and CT in acute stroke. Neurology, 54, 1557–1561.

    Article  PubMed  CAS  Google Scholar 

  34. Floyd, T. F., Shah, P. N., Price, C. C., et al. (2006). Clinically silent cerebral ischemic events after cardiac surgery: Their incidence, regional vascular occurrence, and procedural dependence. Annals of Thoracic Surgery, 81, 2160–2166.

    Article  PubMed  Google Scholar 

  35. Blazek, S., Lurz, P., Mangner, N., et al. (2015). Incidence, characteristics and functional implications of cerebral embolic lesions after the MitraClip procedure. EuroIntervention, 10, 1195–1203.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Barbero.

Ethics declarations

Ethics Approval

The study protocol was reviewed and approved by the Institutional Ethics Committee (protocol 0063123).

Conflict of Interest

The authors declare no competing interests.

Additional information

Associate Editor Angela Taylor oversaw the review of this article

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbero, C., Rinaldi, M., Marchetto, G. et al. Magnetic Resonance Imaging for Cerebral Micro-embolizations During Minimally Invasive Mitral Valve Surgery. J. of Cardiovasc. Trans. Res. 15, 828–833 (2022). https://doi.org/10.1007/s12265-021-10188-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-021-10188-8

Keywords

Navigation