Skip to main content
Log in

Relationship of Cardiac Autonomic Modulation with Cardiovascular Parameters in Adults, According to Body Mass Index and Physical Activity

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

This study aimed to analyze the relationship between cardiac autonomic modulation (CAM) and cardiovascular parameters (blood pressure and resting heart rate) in a sample of 256 adults, grouped by body mass index and sufficient moderate-to-vigorous physical activity (≥150 min/week). The sample showed different cardiovascular parameters and CAM according to body mass index, but not according to physical activity. Adults who are overweight and physically active presented higher relationship between CAM and blood pressure than those who are insufficiently active, similarly to normal weight groups. Recommended levels of physical activity may play an important role in the relationship of HRV with cardiovascular parameters in overweight adults, regardless of sex, age, socioeconomic level, and central fat. Trial registration: Registered at ClinicalTrials.gov (NCT03986879).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Thayer, J. F., Yamamoto, S. S., & Brosschot, J. F. (2010). The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. International Journal of Cardiology, 141(2), 122–131. https://doi.org/10.1016/j.ijcard.2009.09.543.

    Article  PubMed  Google Scholar 

  2. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J (1996) 17(3):354–81.https://doi.org/10.1093/oxfordjournals.eurheartj.a014868

  3. Saito, I., Takata, Y., Maruyama, K., et al. (2018). Association between heart rate variability and home blood pressure: The Toon health study. American Journal of Hypertension, 31(10), 1120–1126. https://doi.org/10.1093/ajh/hpy100.

    Article  PubMed  Google Scholar 

  4. Hart, J. (2013). Association between heart rate variability and manual pulse rate. J Can Chiropr Assoc., 57(3), 243–250.

    PubMed  PubMed Central  Google Scholar 

  5. Fuchs, F. D., & Whelton, P. K. (2020). High blood pressure and cardiovascular disease. Hypertension., 75(2), 285–292. https://doi.org/10.1161/HYPERTENSIONAHA.119.14240.

    Article  CAS  PubMed  Google Scholar 

  6. Aune, D., Sen, A., ó'Hartaigh, B., et al. (2017). Resting heart rate and the risk of cardiovascular disease, total cancer, and all-cause mortality - a systematic review and dose-response meta-analysis of prospective studies. Nutrition, Metabolism, and Cardiovascular Diseases, 27(6), 504–517. https://doi.org/10.1016/j.numecd.2017.04.004.

    Article  CAS  PubMed  Google Scholar 

  7. Casonatto, J., Tinucci, T., Dourado, A. C., & Polito, M. (2011). Cardiovascular and autonomic responses after exercise sessions with different intensities and durations. Clinics (São Paulo, Brazil), 66(3), 453–458. https://doi.org/10.1590/s1807-59322011000300016.

    Article  Google Scholar 

  8. Rossi, R. C., Vanderlei, L. C., Gonçalves, A. C., et al. (2015). Impact of obesity on autonomic modulation, heart rate and blood pressure in obese young people. Autonomic Neuroscience, 193, 138–141. https://doi.org/10.1016/j.autneu.2015.07.424.

    Article  PubMed  Google Scholar 

  9. Prince, S. A., Adamo, K. B., Hamel, M. E., Hardt, J., Connor Gorber, S., & Tremblay, M. (2008). A comparison of direct versus self-report measures for assessing physical activity in adults: A systematic review. International Journal of Behavioral Nutrition and Physical Activity, 5, 56.

    Article  Google Scholar 

  10. Tebar, W. R., Ritti-Dias, R. M., Saraiva, B. T. C., et al. (2019). The relationship between physical activity intensity and domains with cardiac autonomic modulation in adults: An observational protocol study. Medicine (Baltimore), 98(41), e17400. https://doi.org/10.1097/MD.0000000000017400.

    Article  Google Scholar 

  11. Giles, D., Draper, N., & Neil, W. (2016). Validity of the polar V800 heart rate monitor to measure RR intervals at rest. European Journal of Applied Physiology, 116(3), 563–571. https://doi.org/10.1007/s00421-015-3303-9.

    Article  PubMed  Google Scholar 

  12. Catai, A. M., Pastre, C. M., Godoy, M. F., Silva, E. D., Takahashi, A. C. M., & Vanderlei, L. C. M. (2020). Heart rate variability: Are you using it properly? Standardisation checklist of procedures. Brazilian Journal of Physical Therapy, 24(2), 91–102. https://doi.org/10.1016/j.bjpt.2019.02.006.

    Article  PubMed  Google Scholar 

  13. Cilhoroz, B., Giles, D., Zaleski, A., Taylor, B., Fernhall, B., & Pescatello, L. (2020). Validation of the polar V800 heart rate monitor and comparison of artifact correction methods among adults with hypertension. PLoS One, 15(10), e0240220. https://doi.org/10.1371/journal.pone.0240220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Troiano, R. P., Berrigan, D., Dodd, K. W., et al. (2008). Physical activity in the United States measured by accelerometer. Medicine and Science in Sports and Exercise, 40, 181–188.

    Article  Google Scholar 

  15. Trost, S. G., McIver, K. L., & Pate, R. R. (2005). Conducting accelerometer-based activity assessments in field-based research. Medicine and Science in Sports and Exercise, 3711(Suppl), S531–S543.

    Article  Google Scholar 

  16. Sasaki, J. E., John, D., & Freedson, P. S. (2011). Validation and comparison of ActiGraph activity monitors. Journal of Science and Medicine in Sport, 14, 411–416.

    Article  Google Scholar 

  17. World Health Organisation . Global Recommendations on Physical Activity for Health. World Health Organisation; Geneva, Switzerland: 2010. Retrieved from: http://apps.who.int/iris/bitstream/handle/10665/44399/9789241599979_eng.pdf;jsessionid=1892C5EA4A6C4B6EF81ECBD614B2C1FB?sequence=1.

  18. WHO. Physical Status: The Use and Interpretation of Anthropometry: Report of a World Health Organization (WHO) Expert Committee. Geneva, Switzerland: World Health Organization; (1995).

  19. ABEP- Brazilian Association of Researchh Companies. Brazilian Criteria for Economic Classification (2015). Retrieved from: http://www.abep.org/criterio-brasil.

  20. Gamez-Mendez, A. M., Vargas-Robles, H., Rios, A., & Escalante, B. (2015). Oxidative stress-dependent coronary endothelial dysfunction in obese mice. PLoS One, 10(9), e0138609. https://doi.org/10.1371/journal.pone.0138609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Furukawa, S., Fujita, T., Shimabukuro, M., Iwaki, M., Yamada, Y., Nakajima, Y., Nakayama, O., Makishima, M., Matsuda, M., & Shimomura, I. (2004 Dec). Increased oxidative stress in obesity and its impact on metabolic syndrome. The Journal of Clinical Investigation, 114(12), 1752–1761.

    Article  CAS  Google Scholar 

  22. Wohlfahrt, P., Somers, V. K., Cifkova, R., Filipovsky, J., Seidlerova, J., Krajcoviechova, A., Sochor, O., Kullo, I. J., & Lopez-Jimenez, F. (2014 Aug). Relationship between measures of central and general adiposity with aortic stiffness in the general population. Atherosclerosis., 235(2), 625–631.

    Article  CAS  Google Scholar 

  23. Burke, G. L., Bertoni, A. G., Shea, S., Tracy, R., Watson, K. E., Blumenthal, R. S., Chung, H., & Carnethon, M. R. (2008 May 12). The impact of obesity on cardiovascular disease risk factors and subclinical vascular disease: The multi-ethnic study of atherosclerosis. Archives of Internal Medicine, 168(9), 928–935.

    Article  Google Scholar 

  24. Ventura, H. O., Taler, S. J., & Strobeck, J. E. (2005 Feb). Hypertension as a hemodynamic disease: The role of impedance cardiography in diagnostic, prognostic, and therapeutic decision making. American Journal of Hypertension, 18(2 Pt 2), 26S–43S.

    Article  Google Scholar 

  25. Caillon, A., & Schiffrin, E. L. (2016 Mar). Role of inflammation and immunity in hypertension: Recent epidemiological, laboratory, and clinical evidence. Current Hypertension Reports, 18(3), 21.

    Article  Google Scholar 

  26. Huby, A. C., Antonova, G., Groenendyk, J., Gomez-Sanchez, C. E., Bollag, W. B., & Filosa, J. A. (2015 Dec 1). Belin de Chantemèle EJ. Adipocyte-derived hormone Leptin is a direct regulator of aldosterone secretion, which promotes endothelial dysfunction and cardiac fibrosis. Circulation., 132(22), 2134–2145.

    Article  CAS  Google Scholar 

  27. Buglioni, A., Cannone, V., Cataliotti, A., Sangaralingham, S. J., Heublein, D. M., Scott, C. G., Bailey, K. R., Rodeheffer, R. J., Dessì-Fulgheri, P., Sarzani, R., & Burnett Jr., J. C. (2015 Jan). Circulating aldosterone and natriuretic peptides in the general community: Relationship to cardiorenal and metabolic disease. Hypertension., 65(1), 45–53.

    Article  CAS  Google Scholar 

  28. Cassis, L. A., Police, S. B., Yiannikouris, F., & Thatcher, S. E. (2008 Apr). Local adipose tissue renin-angiotensin system. Current Hypertension Reports, 10(2), 93–98.

    Article  CAS  Google Scholar 

  29. Draghici, A. E., & Taylor, J. A. (2016 Sep 28). The physiological basis and measurement of heart rate variability in humans. Journal of Physiological Anthropology, 35(1), 22.

    Article  Google Scholar 

  30. Mayet, J., & Hughes, A. (2003). Cardiac and vascular pathophysiology in hypertension. Heart., 89(9), 1104–1109. https://doi.org/10.1136/heart.89.9.1104.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Routledge, F. S., Campbell, T. S., McFetridge-Durdle, J. A., & Bacon, S. L. (2010). Improvements in heart rate variability with exercise therapy. The Canadian Journal of Cardiology, 26(6), 303–312. https://doi.org/10.1016/s0828-282x(10)70395-0.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Migueles, J. H., Cadenas-Sanchez, C., Ekelund, U., et al. (2017). Accelerometer data collection and processing criteria to assess physical activity and other outcomes: A systematic review and practical considerations. Sports Medicine, 47(9), 1821–1845. https://doi.org/10.1007/s40279-017-0716-0.

    Article  PubMed  Google Scholar 

  33. Herzig, D., Eser, P., Omlin, X., Riener, R., Wilhelm, M., & Achermann, P. (2018 Jan 10). Reproducibility of heart rate variability is parameter and sleep stage dependent. Frontiers in Physiology, 8, 1100. https://doi.org/10.3389/fphys.2017.01100.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sinnreich, R., Kark, J. D., Friedlander, Y., Sapoznikov, D., & Luria, M. H. (1998). Five minute recordings of heart rate variability for population studies: Repeatability and age-sex characteristics. Heart., 80(2), 156–162. https://doi.org/10.1136/hrt.80.2.156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tebar WR, Ritti-Dias RM, Mota J, et al. Relationship between domains of physical activity and cardiac autonomic modulation in adults: a cross-sectional study. Sci Rep. 2020;10(1):15510. Published 2020 Sep 23. doi:https://doi.org/10.1038/s41598-020-72663-7

  36. Schroeder, E. B., Liao, D., Chambless, L. E., Prineas, R. J., Evans, G. W., & Heiss, G. (2003). Hypertension, blood pressure, and heart rate variability: The atherosclerosis risk in communities (ARIC) study. Hypertension., 42(6), 1106–1111. https://doi.org/10.1161/01.HYP.0000100444.71069.73.

    Article  CAS  PubMed  Google Scholar 

  37. Singh, J. P., Larson, M. G., Tsuji, H., Evans, J. C., O'Donnell, C. J., & Levy, D. (1998). Reduced heart rate variability and new-onset hypertension: Insights into pathogenesis of hypertension: The Framingham heart study. Hypertension., 32(2), 293–297. https://doi.org/10.1161/01.hyp.32.2.293.

    Article  CAS  PubMed  Google Scholar 

  38. Kubota Y, Chen LY, Whitsel EA, Folsom AR. Heart rate variability and lifetime risk of cardiovascular disease: the Atherosclerosis Risk in Communities Study. Ann Epidemiol. 2017;27(10):619–625.e2. doi:https://doi.org/10.1016/j.annepidem.2017.08.024

  39. Zhang, D. Y., & Anderson, A. S. (2014). The sympathetic nervous system and heart failure. Cardiology Clinics, 32(1), 33–vii. https://doi.org/10.1016/j.ccl.2013.09.010.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bibevski, S., & Dunlap, M. E. (2011). Evidence for impaired vagus nerve activity in heart failure. Heart Failure Reviews, 16(2), 129–135. https://doi.org/10.1007/s10741-010-9190-6.

    Article  PubMed  Google Scholar 

  41. Azizian, M., Mahdipour, E., Mirhafez, S. R., et al. (2016). Cytokine profiles in overweight and obese subjects and normal weight individuals matched for age and gender. Annals of Clinical Biochemistry, 53(6), 663–668. https://doi.org/10.1177/0004563216629997.

    Article  CAS  PubMed  Google Scholar 

  42. Ellulu, M. S., Patimah, I., Khaza'ai, H., Rahmat, A., & Abed, Y. (2017). Obesity and inflammation: The linking mechanism and the complications. Archives of Medical Science, 13(4), 851–863. https://doi.org/10.5114/aoms.2016.58928.

    Article  CAS  PubMed  Google Scholar 

  43. Pongratz, G., & Straub, R. H. (2014). The sympathetic nervous response in inflammation. Arthritis Research & Therapy, 16(6), 504. https://doi.org/10.1186/s13075-014-0504-2.

    Article  CAS  Google Scholar 

  44. Pavlov, V. A., & Tracey, K. J. (2012). The vagus nerve and the inflammatory reflex--linking immunity and metabolism. Nature Reviews. Endocrinology, 8(12), 743–754. https://doi.org/10.1038/nrendo.2012.189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

List of Abbreviations

HRV Heart rate variability.

SDNN Standard deviation of the mean of all normal RR intervals.

RMSSD Square root of the square mean of the differences between adjacent normal RR intervals in a time interval.

LF Low frequency in normalized units.

HF High frequency in normalized units.

LF/HF Ratio between Low Frequency and High Frequency.

SD1 Standard deviation of instantaneous beat-to-beat variability.

SD2 Long-term standard deviation of continuous R-R intervals.

SBP Systolic blood pressure.

DBP Diastolic blood pressure.

RHR Resting heart rate.

MVPA Moderate-to-vigorous physical activity.

BMI Body mass index.

Funding

This research was funded by the Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP (process number 2017–07321-9).

Author information

Authors and Affiliations

Authors

Contributions

Conception or design of the work: WRT, RMRD, JM, LCMV, and DGDC; Data collection: WRT, BTCS, TMMD, and LDD; Data analysis and/or interpretation of data for the work: WRT, DGDC, and BQF; Drafting the work or revising it critically for important intellectual content: WRT, DGDC, BQF, JM, RMRD, LCMV; Approval of the final version to be published: all the authors.

Corresponding author

Correspondence to William R. Tebar.

Ethics declarations

Competing Interests

The authors declare there is no conflict of interest in regard this manuscript.

Ethics Approval and Consent to Participate

The research has been performed in accordance with the Declaration of Helsinki and the study belongs to a previously registered protocol (NCT03986879), approved by the Ethical Research Committee of Sao Paulo State University (CAAE: 72191717.9.0000.5402). All the participants signed the Informed Consent form, being informed of the research procedures.

Consent for Publication

No individual data was reported in this manuscript; therefore consent for publication is not required.

Additional information

Associate Editor Marat Fudim oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tebar, W.R., Ritti-Dias, R.M., Mota, J. et al. Relationship of Cardiac Autonomic Modulation with Cardiovascular Parameters in Adults, According to Body Mass Index and Physical Activity. J. of Cardiovasc. Trans. Res. 14, 975–983 (2021). https://doi.org/10.1007/s12265-021-10101-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-021-10101-3

Keywords

Navigation