Skip to main content
Log in

Surgical Preparation Reduces Hydrogen Sulfide Released from Human Saphenous Veins in Coronary Artery Bypass Grafting

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The long-term patency rate of saphenous vein (SV) grafts is poor compared to arterial grafts. To investigate the effects of surgical preparation (distention) of SV on hydrogen sulfide (H2S) released from the endothelium, human SV segments were harvested from 43 patients during coronary artery bypass surgery (CABG). Acetylcholine (ACh) induced relaxation that was inhibited by NG-nitro-L-arginine + indomethacin and cysteine aminotransferase inhibitor aminooxyacetic acid in the normal SV. In contrast, ACh did not evoke relaxation in the distended SV (DSV). The concentration of H2S quantified by methylene blue assay in DSV was significantly lower than that in control. Transmission electron microscope and immunohistochemistry studies showed that the preparation destroyed the endothelium, smooth muscle, organelle, and vasa vasorum. We conclude that surgical preparation injures the endothelium and smooth muscle of the SV grafts and reduces H2S release from SV. These effects may contribute to the poor long-term patency of the SV graft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SV:

Saphenous vein

DSV:

Distended saphenous vein

IMA:

Internal mammary artery

H2S:

Hydrogen sulfide

NO:

Nitric oxide

EDHF:

Endothelium-derived hyperpolarizing factor

CABG:

Coronary artery bypass surgery

CAT:

Cysteine aminotransferase

mCAT:

Mitochondrial CAT

cCAT:

Cytosolic CAT

3-MPST:

Mercaptopyruvate sulfurtransferase

ACh:

Acetylcholine

AOAA:

Aminooxyacetic acid

L-NNA:

NG-nitro-L-arginine

PGI2 :

Prostacyclin

PLP:

Pyridoxal 5’-phosphate

SEM:

Standard error of the mean

TEM:

Transmission electron microscope

EC:

Endothelial cell

SMC:

Smooth muscle cell

VV:

Vasa vasorum

MIT & RER:

Mitochondria and rough endoplasmic reticulum

References

  1. Gaudino, M., Antoniades, C., Benedetto, U., Deb, S., Di Franco, A., Di Giammarco, G., et al. (2017). ATLANTIC (Arterial Grafting International Consortium) Alliance. Mechanisms, consequences, and prevention of coronary graft failure. Circulation., 136, 1749–1764.

    Article  Google Scholar 

  2. Lytle, B. W., Loop, F. D., Cosgrove, D. M., Ratliff, N. B., Easley, K., & Taylor, P. C. (1985). Long-term (5 to 12 years) serial studies of internal mammary artery and saphenous vein coronary bypass grafts. The Journal of Thoracic and Cardiovascular Surgery, 89, 248–258.

    Article  CAS  Google Scholar 

  3. Gaudino, M., Benedetto, U., Fremes, S., Biondi-Zoccai, G., Sedrakyan, A., Puskas, J. D., et al. (2018). Radial-artery or saphenous-vein grafts in coronary-artery bypass surgery. The New England Journal of Medicine, 378, 2069–2077.

    Article  Google Scholar 

  4. Yamane, Y., Uchida, N., Okubo, S., Morimoto, H., & Mukai, S. (2017). Impact of the size mismatch between saphenous vein graft and coronary artery on graft patency. General Thoracic and Cardiovascular Surgery, 65, 25–31.

    Article  Google Scholar 

  5. Hata, M., Yoshitake, I., Wakui, S., Unosawa, S., Kimura, H., Hata, H., et al. (2011). Long-term patency rate for radial artery vs. saphenous vein grafts using same-patient materials. Circulation Journal, 75, 1373–1377.

    Article  Google Scholar 

  6. He, G. W., Angus, J. A., & Rosenfeldt, F. L. (1988). Reactivity of the canine isolated internal mammary artery, saphenous vein, and coronary artery to constrictor and dilator substances: relevance to coronary bypass graft surgery. Journal of Cardiovascular Pharmacology, 12, 12–22.

    Article  CAS  Google Scholar 

  7. Van Son, J. A., Smedts, F., Vincent, J. G., van Lier, H. J., & Kubat, K. (1990). Comparative anatomic studies of various arterial conduits for myocardial revascularization. The Journal of Thoracic and Cardiovascular Surgery, 99, 703–707.

    Article  Google Scholar 

  8. Lüscher, T. F., Diederich, D., Siebenmann, R., Lehmann, K., Stulz, P., von Segesser, L., et al. (1988). Difference between endothelium-dependent relaxation in arterial and in venous coronary bypass grafts. The New England Journal of Medicine, 319, 462–467.

    Article  Google Scholar 

  9. Liu, Z. G., Ge, Z. D., & He, G. W. (2000). Difference in endothelium-derived hyperpolarizing factor-mediated hyperpolarization and nitric oxide release between human internal mammary artery and saphenous vein. Circulation, 102, 296–301.

    Google Scholar 

  10. Zhang, R. Z., Yang, Q., Yim, A. P., Huang, Y., & He, G. W. (2004). Different role of nitric oxide and endothelium-derived hyperpolarizing factor in endothelium-dependent hyperpolarization and relaxation in porcine coronary arterial and venous system. Journal of Cardiovascular Pharmacology, 43, 839–850.

    Article  CAS  Google Scholar 

  11. Chester, A. H., Buttery, L. D., Borland, J. A., Springall, D. R., Rothery, S., Severs, N. J., et al. (1998). Structural, biochemical and functional effects of distending pressure on human saphenous vein: implications for bypass grafting. Coronary Artery Disease, 9, 143–151.

    CAS  PubMed  Google Scholar 

  12. Liu, Z. G., Liu, X. C., Yim, A. P., & He, G. W. (2001). Direct measurement of nitric oxide release from saphenous vein: abolishment by surgical preparation. The Annals of Thoracic Surgery, 71, 133–137.

    Article  CAS  Google Scholar 

  13. Zhao, J., Andreasen, J. J., Yang, J., Rasmussen, B. S., Liao, D., & Gregersen, H. (2007). Manual pressure distension of the human saphenous vein changes its biomechanical properties-implication for coronary artery bypass grafting. Journal of Biomechanics, 40, 2268–2276.

    Article  Google Scholar 

  14. Dashwood, M. R., Savage, K., Tsui, J. C., Dooley, A., Shaw, S. G., Fernández Alfonso, M. S., Bodin, L., & Souza, D. S. (2009). Retaining perivascular tissue of human saphenous vein grafts protects against surgical and distension-induced damage and preserves endothelial nitric oxide synthase and nitric oxide synthase activity. The Journal of Thoracic and Cardiovascular Surgery, 138, 334–340.

    Article  CAS  Google Scholar 

  15. Chello, M., Mastroroberto, P., Frati, G., Patti, G., D’Ambrosio, A., Di Sciascio, G., & Covino, E. (2003). Pressure distension stimulates the expression of endothelial adhesion molecules in the human saphenous vein graft. The Annals of Thoracic Surgery, 76, 453–458.

    Article  Google Scholar 

  16. Dreifaldt, M., Souza, D. S., Loesch, A., Muddle, J. R., Karlsson, M. G., Filbey, D., et al. (2011). The “no-touch” harvesting technique for vein grafts in coronary artery bypass surgery preserves an intact vasa vasorum. The Journal of Thoracic and Cardiovascular Surgery, 141, 145–150.

    Article  Google Scholar 

  17. Souza, D. S., Johansson, B., Bojö, L., Karlsson, R., Geijer, H., Filbey, D., et al. (2006). Harvesting the saphenous vein with surrounding tissue for CABG provides long-term graft patency comparable to the left internal thoracic artery: results of a randomized longitudinal trial. The Journal of Thoracic and Cardiovascular Surgery, 132, 373–378.

    Article  Google Scholar 

  18. Coletta, C., Papapetropoulos, A., Erdelyi, K., Olah, G., Módis, K., Panopoulos, P., et al. (2012). Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proceedings of the National Academy of Sciences of the United States of America, 109, 9161–9166.

    Article  CAS  Google Scholar 

  19. Shibuya, N., Mikami, Y., Kimura, Y., et al. (2009). Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. Journal of Biochemistry, 146, 623–626.

    Article  CAS  Google Scholar 

  20. Webb, G. D., Lim, L. H., Oh, V. M., Yeo, S. B., Cheong, Y. P., Ali, M. Y., et al. (2008). Contractile and vasorelaxant effects of hydrogen sulfide and its biosynthesis in the human internal mammary artery. The Journal of Pharmacology and Experimental Therapeutics, 324, 876–882.

    Article  CAS  Google Scholar 

  21. Ariyaratnam, P., Loubani, M., & Morice, A. H. (2013). Hydrogen sulphide vasodilates human pulmonary arteries: a possible role in pulmonary hypertension? Microvascular Research, 90, 135–137.

    Article  CAS  Google Scholar 

  22. Materazzi, S., Zagli, G., Nassini, R., Bartolini, I., Romagnoli, S., Chelazzi, C., et al. (2017). Vasodilator activity of hydrogen sulfide (H2S) in human mesenteric arteries. Microvascular Research, 109, 38–44.

    Article  CAS  Google Scholar 

  23. Gomez, I., Ozen, G., Deschildre, C., Amgoud, Y., Boubaya, L., Gorenne, I., et al. (2016). Reverse regulatory pathway (H2S/PGE2/MMP) in human aortic aneurysm and saphenous vein varicosity. PLoS One, 11, e0158421.

    Article  Google Scholar 

  24. Yang, J. A., & He, G. W. (1997). Surgical preparation abolishes endothelium-derived hyperpolarizing factor-mediated hyperpolarization in the human saphenous vein. The Annals of Thoracic Surgery, 63, 429–433.

    Article  CAS  Google Scholar 

  25. He, G. W., & Liu, Z. G. (2001). Comparison of nitric oxide release and endothelium-derived hyperpolarizing factor-mediated hyperpolarization between human radial and internal mammary arteries. Circulation., 104, 344–349.

    Article  Google Scholar 

  26. Gao, G., Bai, X. Y., Xuan, C., Liu, X. C., Jing, W. B., Novakovic, A., et al. (2012). Role of TRPC3 channel in human internal mammary artery. Archives of Medical Research, 43, 431–437.

    Article  CAS  Google Scholar 

  27. Chen, Z. W., Huang, Y., Yang, Q., Li, X., Wei, W., & He, G. W. (2005). Urocortin-induced relaxation in the human internal mammary artery. Cardiovascular Research, 65, 913–920.

    Article  CAS  Google Scholar 

  28. Lechuga, T. J., Zhang, H. H., Sheibani, L., Karim, M., Jia, J., Magness, R. R., et al. (2015). Estrogen replacement therapy in ovariectomized nonpregnant ewes stimulates uterine artery hydrogen sulfide biosynthesis by selectively up-regulating cystathionine β-synthase expression. Endocrinology., 156, 2288–2298.

    Article  CAS  Google Scholar 

  29. Yuan, C., Hou, H. T., Chen, H. X., Wang, J., Wang, Z. Q., Chen, T. N., et al. (2019). Hydrogen sulfide-mediated endothelial function and the interaction with eNOS and PDE5A activity in human internal mammary arteries. The Journal of International Medical Research, 02.

  30. Sellke, F. W., DiMaio, J. M., Caplan, L. R., Ferguson, T. B., Gardner, T. J., Hiratzka, L. F., et al. (2005). American Heart Association. Comparing on-pump and off-pump coronary artery bypass grafting: numerous studies but few conclusions: a scientific statement from the American Heart Association council on cardiovascular surgery and anesthesia in collaboration with the interdisciplinary working group on quality of care and outcomes research. Circulation., 111, 2858–2864.

    Article  Google Scholar 

  31. Ramos, J. R., Berger, K., Mansfield, P. B., & Savage, L. R. (1976). Histologic fate and endothelial changes of distended and nondistended vein grafts. Annals of Surgery, 183, 205–228.

    Article  CAS  Google Scholar 

  32. He, G. W., & Taggart, D. P. (2016). Antispastic management in arterial grafts in coronary artery bypass grafting surgery. The Annals of Thoracic Surgery, 102, 659–668.

    Article  Google Scholar 

  33. Angelini, G. D., Bryan, A. J., Williams, H. M. J., Morgan, R., & Newby, A. C. (1990). Distension promotes platelet and leukocyte adhesion and reduces short-term patency in pig arteriovenous bypass grafts. The Journal of Thoracic and Cardiovascular Surgery, 99, 433–439.

    Article  CAS  Google Scholar 

  34. Fernández-Alfonso, M. S., Gil-Ortega, M., Aranguez, I., Souza, D., Dreifaldt, M., Somoza, B., et al. (2017). Role of PVAT in coronary atherosclerosis and vein graft patency: friend or foe? British Journal of Pharmacology, 174, 3561–3572.

    Article  Google Scholar 

  35. Zaborska, K. E., Wareing, M., & Austin, C. (2017). Comparisons between perivascular adipose tissue and the endothelium in their modulation of vascular tone. British Journal of Pharmacology, 174, 3388–3397.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [81870288], the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences [2019XK310001 and 2018TX31002], and Tianjin Science and Technology Committee [18PTZWHZ00060]

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Wei He.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Associate Editor Adrian Chester oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The clinical relevance:

• The long-term patency rate of saphenous vein (SV) grafts is poor compared to arterial grafts in CABG. We demonstrated that the surgical preparation (distention) of the SV for grafting reduces the amount of hydrogen sulfide (H2S) released from the endothelium due to damage of the endothelium.

• The endothelial damage by the distention procedure of SV during CABG may have an adverse effect on the long-term patency of the SV graft.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, C., Hou, HT., Chen, HX. et al. Surgical Preparation Reduces Hydrogen Sulfide Released from Human Saphenous Veins in Coronary Artery Bypass Grafting. J. of Cardiovasc. Trans. Res. 13, 181–190 (2020). https://doi.org/10.1007/s12265-019-09925-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-019-09925-x

Keywords

Navigation