Skip to main content
Log in

Patient-Specific Simulations Reveal Significant Differences in Mechanical Stimuli in Venous and Arterial Coronary Grafts

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Mechanical stimuli are key to understanding disease progression and clinically observed differences in failure rates between arterial and venous grafts following coronary artery bypass graft surgery. We quantify biologically relevant mechanical stimuli, not available from standard imaging, in patient-specific simulations incorporating non-invasive clinical data. We couple CFD with closed-loop circulatory physiology models to quantify biologically relevant indices, including wall shear, oscillatory shear, and wall strain. We account for vessel-specific material properties in simulating vessel wall deformation. Wall shear was significantly lower (p = 0.014*) and atheroprone area significantly higher (p = 0.040*) in venous compared to arterial grafts. Wall strain in venous grafts was significantly lower (p = 0.003*) than in arterial grafts while no significant difference was observed in oscillatory shear index. Simulations demonstrate significant differences in mechanical stimuli acting on venous vs. arterial grafts, in line with clinically observed graft failure rates, offering a promising avenue for stratifying patients at risk for graft failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CABG:

Coronary artery bypass graft

CAD:

Coronary artery disease

CFD:

Computational fluid dynamics

CT:

Computed tomography

GSI1:

Green Strain Invariant1

IMA:

Internal mammary artery

LPN:

Lumped parameter network

OSI:

Oscillatory shear index

SVG:

Saphenous vein graft

WSS:

Wall shear stress

References

  1. Braunwald, E., Antman, E. M., Beasley, J. W., Califf, R. M., Cheitlin, M. D., Hochman, J. S., et al. (2002). ACC/AHA Guideline update for the management of patients with unstable angina and non-ST-segment elevation myocardial infarction—2002: summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients with Unstable Angina). Circulation, 106(14), 1893–1900.

    Article  PubMed  Google Scholar 

  2. Motwani, J. G., & Topol, E. J. (1998). Aortocoronary saphenous vein graft disease pathogenesis, predisposition, and prevention. Circulation, 97(9), 916–931.

    Article  CAS  PubMed  Google Scholar 

  3. Goldman, S., Zadina, K., Moritz, T., Ovitt, T., Sethi, G., Copeland, J. G., et al. (2004). Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: results from a Department of Veterans Affairs Cooperative Study. Journal of the American College of Cardiology, 44(11), 2149–2156.

    Article  PubMed  Google Scholar 

  4. Halabi, A. R., Alexander, J. H., Shaw, L. K., Lorenz, T. J., Liao, L., Kong, D. F., et al. (2005). Relation of early saphenous vein graft failure to outcomes following coronary artery bypass surgery. The American Journal of Cardiology, 96(9), 1254–1259.

    Article  PubMed  Google Scholar 

  5. Lopes, R. D., Mehta, R. H., Hafley, G. E., Williams, J. B., Mack, M. J., Peterson, E. D., et al. (2012). Relationship between vein graft failure and subsequent clinical outcomes after coronary artery bypass surgery. Circulation, 125(6), 749–756.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Weintraub, W. S., Jones, E. L., Morris, D. C., King, S. B., Guyton, R. A., & Craver, J. M. (1997). Outcome of reoperative coronary bypass surgery versus coronary angioplasty after previous bypass surgery. Circulation, 95(4), 868–877.

    Article  CAS  PubMed  Google Scholar 

  7. Dobrin, P. B. (1995). Mechanical factors associated with the development of intimal and medial thickening in vein grafts subjected to arterial pressure. A model of arteries exposed to hypertension. Hypertension, 26(1), 38–43.

    Article  CAS  PubMed  Google Scholar 

  8. Glagov, S., Zarins, C., Giddens, D., & Ku, D. N. (1988). Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Archives of Pathology & Laboratory Medicine, 112(10), 1018–1031.

    CAS  Google Scholar 

  9. Figueroa, C. A., Baek, S., Taylor, C. A., & Humphrey, J. D. (2009). A computational framework for fluid–solid-growth modeling in cardiovascular simulations. Computer Methods in Applied Mechanics and Engineering, 198(45), 3583–3602.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Valentín, A., Cardamone, L., Baek, S., & Humphrey, J. (2009). Complementary vasoactivity and matrix remodelling in arterial adaptations to altered flow and pressure. Journal of the Royal Society Interface, 6(32), 293–306.

    Article  Google Scholar 

  11. Lang, R. M., Badano, L. P., Mor-Avi, V., Afilalo, J., Armstrong, A., Ernande, L., et al. (2015). Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Journal of the American Society of Echocardiography, 28(1), 1–39. e14.

    Article  PubMed  Google Scholar 

  12. Quiñones, M. A., Otto, C. M., Stoddard, M., Waggoner, A., & Zoghbi, W. A. (2002). Recommendations for quantification of Doppler echocardiography: a report from the Doppler Quantification Task Force of the Nomenclature and Standards Committee of the American Society of Echocardiography. Journal of the American Society of Echocardiography, 15(2), 167–184.

    Article  PubMed  Google Scholar 

  13. Stelfox, H. T., Ahmed, S. B., Ribeiro, R. A., Gettings, E. M., Pomerantsev, E., & Schmidt, U. (2006). Hemodynamic monitoring in obese patients: the impact of body mass index on cardiac output and stroke volume*. Critical Care Medicine, 34(4), 1243–1246.

    Article  PubMed  Google Scholar 

  14. Taylor, C. A., Fonte, T. A., & Min, J. K. (2013). Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. Journal of the American College of Cardiology, 61(22), 2233–2241.

    Article  PubMed  Google Scholar 

  15. Sahni, O., Müller, J., Jansen, K. E., Shephard, M. S., & Taylor, C. A. (2006). Efficient anisotropic adaptive discretization of the cardiovascular system. Computer Methods in Applied Mechanics and Engineering, 195(41), 5634–5655.

    Article  Google Scholar 

  16. Coogan, J. S., Humphrey, J. D., & Figueroa, C. A. (2013). Computational simulations of hemodynamic changes within thoracic, coronary, and cerebral arteries following early wall remodeling in response to distal aortic coarctation. Biomechanics and modeling in mechanobiology, 1-15

  17. Roccabianca, S., Figueroa, C., Tellides, G., & Humphrey, J. (2014). Quantification of regional differences in aortic stiffness in the aging human. Journal of the Mechanical Behavior of Biomedical Materials, 29, 618–634.

    Article  CAS  PubMed  Google Scholar 

  18. Han, D.-W., Park, Y. H., Kim, J. K., Jung, T. G., Lee, K.-Y., Hyon, S.-H., et al. (2005). Long-term preservation of human saphenous vein by green tea polyphenol under physiological conditions. Tissue Engineering, 11(7-8), 1054–1064.

    Article  CAS  PubMed  Google Scholar 

  19. Podesser, B., Neumann, F., Neumann, M., Schreiner, W., Wollenek, G., & Mallinger, R. (1998). Outer radius-wall thickness ratio, a postmortem quantitative histology in human coronary arteries. Cells, Tissues, Organs, 163(2), 63–68.

    Article  CAS  Google Scholar 

  20. Monos, E., & Csengödy, J. (1980). Does hemodynamic adaptation take place in the vein grafted into an artery? Pfluegers Archiv, 384(2), 177–182.

    Article  CAS  PubMed  Google Scholar 

  21. Bazilevs, Y., Hsu, M.-C., Benson, D., Sankaran, S., & Marsden, A. (2009). Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Computational Mechanics, 45(1), 77–89.

    Article  Google Scholar 

  22. Moghadam, M. E., Vignon-Clementel, I. E., Figliola, R., Marsden, A. L., M. O. C. H. A. Investigators, et al. (2013). A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations. Journal of Computational Physics, 244, 63–79.

    Article  Google Scholar 

  23. Kim, H. J., Vignon-Clementel, I. E., Coogan, J. S., Figueroa, C. A., Jansen, K. E., & Taylor, C. A. (2010). Patient-specific modeling of blood flow and pressure in human coronary arteries. Annals of Biomedical Engineering, 38(10), 3195–3209.

    Article  CAS  PubMed  Google Scholar 

  24. Sankaran, S., Moghadam, M. E., Kahn, A. M., Tseng, E. E., Guccione, J. M., & Marsden, A. L. (2012). Patient-specific multiscale modeling of blood flow for coronary artery bypass graft surgery. Annals of Biomedical Engineering, 40(10), 2228–2242.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Corsini, C., Baker, C., Kung, E., Schievano, S., Arbia, G., Baretta, A., et al. (2014). An integrated approach to patient-specific predictive modeling for single ventricle heart palliation. Computer Methods in Biomechanics and Biomedical Engineering, 17(14), 1572–1589.

    Article  PubMed  Google Scholar 

  26. Bogren, H. G., Klipstein, R. H., Firmin, D. N., Mohiaddin, R. H., Underwood, S. R., Rees, R. S. O., et al. (1989). Quantitation of antegrade and retrograde blood flow in the human aorta by magnetic resonance velocity mapping. American Heart Journal, 117(6), 1214–1222.

    Article  CAS  PubMed  Google Scholar 

  27. Changizi, M. A., & Cherniak, C. (2000). Modeling the large-scale geometry of human coronary arteries. Canadian Journal of Physiology and Pharmacology, 78(8), 603–611.

    Article  CAS  PubMed  Google Scholar 

  28. Zamir, M., Sinclair, P., & Wonnacott, T. H. (1992). Relation between diameter and flow in major branches of the arch of the aorta. Journal of Biomechanics, 25(11), 1303–1310.

    Article  CAS  PubMed  Google Scholar 

  29. Figueroa, C. A., Vignon-Clementel, I. E., Jansen, K. E., Hughes, T. J., & Taylor, C. A. (2006). A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Computer Methods in Applied Mechanics and Engineering, 195(41), 5685–5706.

    Article  Google Scholar 

  30. Esmaily-Moghadam, M., Bazilevs, Y., & Marsden, A. L. (2013). A new preconditioning technique for implicitly coupled multidomain simulations with applications to hemodynamics. Computational Mechanics, 52(5), 1141–1152.

    Article  Google Scholar 

  31. Kung, E. O., Les, A. S., Figueroa, C. A., Medina, F., Arcaute, K., Wicker, R. B., et al. (2011). In vitro validation of finite element analysis of blood flow in deformable models. Annals of Biomedical Engineering, 39(7), 1947–1960.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jones, E., Oliphant, T., & Peterson, P. (2014). {SciPy}: open source scientific tools for {Python}.

  33. Sipahi, I., Akay, M. H., Dagdelen, S., Blitz, A., & Alhan, C. (2014). Coronary artery bypass grafting vs percutaneous coronary intervention and long-term mortality and morbidity in multivessel disease: meta-analysis of randomized clinical trials of the arterial grafting and stenting era. JAMA internal medicine, 174(2), 223–230.

    Article  PubMed  Google Scholar 

  34. Weintraub, W. S., Grau-Sepulveda, M. V., Weiss, J. M., O'Brien, S. M., Peterson, E. D., Kolm, P., et al. (2012). Comparative effectiveness of revascularization strategies. New England Journal of Medicine, 366(16), 1467–1476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xiao, N., Humphrey, J. D., & Figueroa, C. A. (2013). Multi-scale computational model of three-dimensional hemodynamics within a deformable full-body arterial network. Journal of Computational Physics, 244, 22–40.

    Article  PubMed  Google Scholar 

  36. Shimizu, T., Ito, S., Kikuchi, Y., Misaka, M., Hirayama, T., Ishimaru, S., et al. (2004). Arterial conduit shear stress following bypass grafting for intermediate coronary artery stenosis: a comparative study with saphenous vein grafts. European Journal of Cardio-Thoracic Surgery, 25(4), 578–584.

    Article  PubMed  Google Scholar 

  37. Cox, J. L., Chiasson, D. A., & Gotlieb, A. I. (1991). Stranger in a strange land: the pathogenesis of saphenous vein graft stenosis with emphasis on structural and functional differences between veins and arteries. Progress in Cardiovascular Diseases, 34(1), 45–68.

    Article  CAS  PubMed  Google Scholar 

  38. Dobrin, P., Littooy, F., & Endean, E. (1989). Mechanical factors predisposing to intimal hyperplasia and medial thickening in autogenous vein grafts. Surgery, 105(3), 393–400.

    CAS  PubMed  Google Scholar 

  39. Haga, J. H., Li, Y.-S. J., & Chien, S. (2007). Molecular basis of the effects of mechanical stretch on vascular smooth muscle cells. Journal of Biomechanics, 40(5), 947–960.

    Article  PubMed  Google Scholar 

  40. Ramachandra, A. B., Sankaran, S., Humphrey, J. D., & Marsden, A. L. (2015). Computational simulation of the adaptive capacity of vein grafts in response to increased pressure. Journal of Biomechanical Engineering, 137(3), 031009.

    Article  Google Scholar 

  41. Zeng, D., Ding, Z., Friedman, M. H., & Ethier, C. R. (2003). Effects of cardiac motion on right coronary artery hemodynamics. Annals of Biomedical Engineering, 31(4), 420–429.

    Article  PubMed  Google Scholar 

  42. Tran, J., Schiavazzi, D., Ramachandra, A., Kahn, A., & Marsden, A. (2016). Automated tuning for parameter identification in multiscale coronary simulations. Computers and Fluids. doi:10.1016/j.compfluid.2016.05.015

  43. Merkow, J., Tu, Z., Kriegman, D., & Marsden, A. (2015). Structural edge detection for cardiovascular modeling. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015 (pp. 735-742): Springer.

  44. Douglas, P. S., Pontone, G., Hlatky, M. A., Patel, M. R., Norgaard, B. L., Byrne, R. A., et al. (2015). Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies vs. usual care in patients with suspected coronary artery disease: the prospective longitudinal trial of FFRCT: outcome and resource impacts study. European heart journal, ehv444.

  45. Yang, W., Chan, F. P., Reddy, V. M., Marsden, A. L., & Feinstein, J. A. (2015). Flow simulations and validation for the first cohort of patients undergoing the Y-graft Fontan procedure. The Journal of Thoracic and Cardiovascular Surgery, 149(1), 247–255.

    Article  PubMed  Google Scholar 

  46. Esmaily-Moghadam, M., Hsia, T.-Y., Marsden, A. L., & Investigators, M. o. C. H. A. (2015). The assisted bidirectional Glenn: a novel surgical approach for first-stage single-ventricle heart palliation. The Journal of Thoracic and Cardiovascular Surgery, 149(3), 699–705.

    Article  PubMed  Google Scholar 

  47. LaDisa, J. F., Olson, L. E., Guler, I., Hettrick, D. A., Audi, S. H., Kersten, J. R., et al. (2004). Stent design properties and deployment ratio influence indexes of wall shear stress: a three-dimensional computational fluid dynamics investigation within a normal artery. Journal of Applied Physiology, 97(1), 424–430.

    Article  PubMed  Google Scholar 

  48. Di Achille, P., & Humphrey, J. D. (2012). Toward large-scale computational fluid-solid-growth models of intracranial aneurysms. The Yale Journal of Biology and Medicine, 85(2), 217.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Weiguang Yang, PhD, for his help with variable wall property code, Christopher Chu for his help with patient model construction from CT scans, and Wendy Davila for her help with data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison L. Marsden.

Ethics declarations

Funding

This work was supported by NIH grant (NIH R01-RHL123689A), NSF CAREER Award OCI-1150184 to A. L. M., and a Burroughs Wellcome Fund Career Award at the Scientific Interface to A. L. M. Computational resources were provided by a grant to A. L. M (TG-CTS130034) through the Extreme Science and Engineering Discovery Environment (XSEDE).

Conflict of Interest

Author A. B. R. declares that he has no conflict of interest. Author A. K. declares that he has no conflict of interest. Author A.L.M. declares that she has no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Patient recruitment and access to non-invasive clinical data (computer tomographic (CT) images, echocardiography data) was carried out according to protocols approved by the University of California and Stanford University institutional review boards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Associate Editor Adrian Chester oversaw the review of this article

Appendix

Appendix

The following paragraphs elaborate the computation of mechanical stimuli indices from primary mechanics quantities such as velocity and displacements.

Time averaged wall shear stress (TAWSS) is computed as,

$$ \mathrm{TAWSS}=\frac{\mathrm{mag}\left({\displaystyle {\int}_0^{T_{\mathrm{CC}}}\left(\overrightarrow{\mathrm{WSS}}\right)dt}\right)}{T_{\kern0.1em \mathrm{C}\mathrm{C}}} $$

where \( \left(\overrightarrow{\mathrm{WSS}}\right) \) is the wall shear stress vector, the tangential traction force produced by blood moving across the endothelial surface, TCC is the duration of one cardiac cycle, and mag indicates magnitude. For statistical analysis, TAWSS in each graft was normalized by the aortic value of TAWSS in the same patient to normalize for patient variability.

Oscillatory shear index, a measure of oscillatory component of the flow, is computed as,

$$ \mathrm{O}\mathrm{S}\mathrm{I}=\frac{1}{2}\left(1-\frac{\left|{\displaystyle {\int}_0^{T_{\mathrm{CC}}}\left(\overrightarrow{\mathrm{WSS}}\right)\kern0.1em }dt\right|}{{\displaystyle {\int}_0^{T_{\mathrm{CC}}}\left|\left(\overrightarrow{\mathrm{WSS}}\right)\right|dt}}\right). $$

Atheroprone area (A athero), a measure of the area of the graft prone to atherosclerosis, is computed as,

$$ {A}_{\mathrm{athero}}=\left(\frac{{\displaystyle {\int}_{A_{\kern0.1em \mathrm{graft}}}fdA}}{{\displaystyle {\int}_{A_{\kern0.1em \mathrm{graft}}}dA}}\right),f=\left\{\begin{array}{l}1,\left|\overrightarrow{\mathrm{WSS}}\right|<4\frac{\mathrm{dyn}}{{\mathrm{cm}}^2,}\hfill \\ {}0,\mathrm{otherwise}\hfill \end{array}\right. $$

with the threshold for low WSS set to 4 dyn/cm2 based on literature data [47].

Amongst several potential measures of vessel wall strain, we chose to quantify Green Strain Invariant 1 (GSI1), a scalar measure of strain that is insensitive to rigid body motions, measured with respect to diastolic configuration [48]. This is calculated as

$$ \mathrm{G}\mathrm{S}\mathrm{I}1=tr\left(\frac{1}{2}\left(\overline{\overline{F}}{\overline{\overline{F}}}^T-\overline{\overline{I}}\right)\right), $$

Where \( \overline{\overline{F}} \) is a tensor defined as the gradient of displacement vector, \( \overline{\overline{I}} \) is an identity tensor and tr is the matrix trace operator.

Diameter was computed from lumen area by approximating the lumen area to be a circle. Lumen area was measured perpendicular to the vessel centerline and averaged across the length of the vessel. Tortuosity was defined as distance between points along the length of centerline divided by the distance between first and last point on the centerline and is a measure of deviation of centerline from a straight line.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramachandra, A.B., Kahn, A.M. & Marsden, A.L. Patient-Specific Simulations Reveal Significant Differences in Mechanical Stimuli in Venous and Arterial Coronary Grafts. J. of Cardiovasc. Trans. Res. 9, 279–290 (2016). https://doi.org/10.1007/s12265-016-9706-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-016-9706-0

Keywords

Navigation