Skip to main content

Advertisement

Log in

Endothelial Repair and Regeneration Following Intimal Injury

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Coronary artery intervention using device implants significantly reduce the risk of restenosis and the need for revascularization but are associated with endothelial denudation and impaired function. This may be due to incomplete endothelial recovery as a result of intimal injury, presence of polymer and/or high antiproliferative drug accumulation in the intima. The permanent presence of a metal prosthesis or polymer may impair the proliferation of resident endothelial cells to cover empty areas. Attention has focused on the robust replenishment of endothelial monolayer by recruitment of circulating endothelial progenitor cells derived from the bone marrow to areas of endothelial injury. The balance between endothelial damage and repair is critical for the maintenance of intimal integrity, function, and prevention of thrombotic complications. This review will discuss on the aftereffects of intravascular device implants on endothelial injury and the pathways involved in endothelial repair and regeneration with an emphasis on endothelial progenitor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CECs:

Circulating endothelial cells

EMPs:

Endothelial microparticles

eNOS:

Endothelial nitric oxide synthase

EPCs:

Endothelial progenitor cells

ICAM-1:

Intercellular adhesion molecule-1

ILs:

Interleukins

KDR:

Kinase insert domain receptor

MCP-1:

Monocyte chemoattractant protein-1

NO:

Nitric oxide

PAI-1:

Plasminogen activator inhibitor-1

PECAM-1:

Platelet endothelial cell adhesion molecule-1

ROS:

Reactive oxygen species

TFPI:

Tissue factor pathway inhibitor

tPA:

Tissue plasminogen activator

VCAM-1:

Vascular cell adhesion molecule-1

VE-cadherin:

Vascular endothelial-cadherin

VEGFR-2:

Vascular endothelial growth factor receptor-2

vWF:

Von Willebrand factor

References

  1. Massberg, S., Schulz, C., & Gawaz, M. (2003). Role of platelets in the pathophysiology of acute coronary syndrome. Seminars in Vascular Medicine, 3(2), 147–162.

    Article  PubMed  Google Scholar 

  2. Jackson, S. P., Nesbitt, W. S., & Kulkarni, S. (2003). Signaling events underlying thrombus formation. Journal of Thrombosis and Haemostasis, 1(7), 1602–1612.

    Article  CAS  PubMed  Google Scholar 

  3. Konstantinides, S., Schäfer, K., Thinnes, T., & Loskutoff, D. J. (2001). Plasminogen activator inhibitor-1 and its cofactor vitronectin stabilize arterial thrombi after vascular injury in mice. Circulation, 103(4), 576–583.

    Article  CAS  PubMed  Google Scholar 

  4. Koppara, T., Cheng, Q., Yahagi, K., Mori, H., Sanchez, O. D., Feygin, J., et al. (2015). Thrombogenicity and early vascular healing response in metallic biodegradable polymer-based and fully bioabsorbable drug-eluting stents. Circulation. Cardiovascular Interventions, 8(6), e002427.

    Article  PubMed  Google Scholar 

  5. Tesfamariam, B. (2008). Platelet function in intravascular device implant-induced intimal injury. Cardiovascular Revascularization Medicine, 9(2), 78–87.

    Article  PubMed  Google Scholar 

  6. Otsuka, F., Finn, A. V., Yazdani, S. K., Nakano, M., Kolodgie, F. D., & Virmani, R. (2012). The importance of the endothelium in atherothrombosis and coronary stenting. Nature Reviews Cardiology, 9(8), 439–453.

    Article  CAS  PubMed  Google Scholar 

  7. Ballermann, B. J. (1998). Endothelial cell activation. Kidney International, 53(6), 1810–1826.

    Article  CAS  PubMed  Google Scholar 

  8. Muldowney, J. A., 3rd, Stringham, J. R., Levy, S. E., Gleaves, L. A., Eren, M., Piana, R. N., et al. (2007). Antiproliferative agents alter vascular plasminogen activator inhibitor-1 expression: a potential prothrombotic mechanism of drug-eluting stents. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(2), 400–406.

    Article  CAS  PubMed  Google Scholar 

  9. Ara, J., Mirapeix, E., Arrizabalaga, P., Rodriguez, R., Ascaso, C., Abellana, R., et al. (2001). Circulating soluble adhesion molecules in ANCA-associated vasculitis. Nephrology, Dialysis, Transplantation, 16, 276–285.

    Article  CAS  PubMed  Google Scholar 

  10. Cai, H. (2005). NAD(P)H oxidase-dependent self-propagation of hydrogen peroxide and vascular disease. Circulation Research, 96(8), 818–822.

    Article  CAS  PubMed  Google Scholar 

  11. Blum, A., Schneider, D. J., Sobel, B. E., & Dauerman, H. L. (2004). Endothelial dysfunction and inflammation after percutaneous coronary intervention. American Journal of Cardiology, 94(11), 1420–1423.

    Article  CAS  PubMed  Google Scholar 

  12. Hofma, S. H., van der Giessen, W. J., van Dalen, B. M., Lemos, P. A., McFadden, E. P., Sianos, G., et al. (2006). Indication of long-term endothelial dysfunction after sirolimus-eluting stent implantation. European Heart Journal, 27(2), 166–170.

    Article  PubMed  Google Scholar 

  13. Togni, M., Windecker, S., Cocchia, R., Wenaweser, P., Cook, S., Billinger, M., et al. (2005). Sirolimus-eluting stents associated with paradoxic coronary vasoconstriction. Journal of the American College of Cardiology, 46(2), 231–236.

    Article  CAS  PubMed  Google Scholar 

  14. Pendyala, L. K., Li, J., Shinke, T., Geva, S., Yin, X., Chen, J. P., et al. (2009). Endothelium-dependent vasomotor dysfunction in pig coronary arteries with paclitaxel-eluting stents is associated with inflammation and oxidative stress. JACC Cardiovascular Interventions, 2(3), 253–262.

    Article  PubMed  Google Scholar 

  15. Tesfamariam, B. (2008). Drug release kinetics from stent device-based delivery systems. Journal of Cardiovascular Pharmacology, 51(2), 118–125.

    Article  CAS  PubMed  Google Scholar 

  16. Stähli, B. E., Camici, G. G., Steffel, J., Akhmedov, A., Shojaati, K., Graber, M., et al. (2006). Paclitaxel enhances thrombin-induced endothelial tissue factor expression via c-Jun terminal NH2 kinase activation. Circulation Research, 99(2), 149–155.

    Article  PubMed  Google Scholar 

  17. Holy, E. W., Jakob, P., Eickner, T., Camici, G. G., Beer, J. H., Akhmedov, A., et al. (2014). PI3K/p110α inhibition selectively interferes with arterial thrombosis and neointima formation, but not re-endothelialization: potential implications for drug-eluting stent design. European Heart Journal, 35(12), 808–820.

    Article  CAS  PubMed  Google Scholar 

  18. Ma, Q., Zhou, Y., Nie, X., Yu, M., Gao, F., Wang, Z., et al. (2012). Rapamycin affects tissue plasminogen activator and plasminogen activator inhibitor I expression: a potential prothrombotic mechanism of drug-eluting stents. Angiology, 63(5), 330–335.

    Article  CAS  PubMed  Google Scholar 

  19. Togni, M., Räber, L., Cocchia, R., Wenaweser, P., Cook, S., Windecker, S., et al. (2007). Local vascular dysfunction after coronary paclitaxel-eluting stent implantation. International Journal of Cardiology, 120(2), 212–220.

    Article  PubMed  Google Scholar 

  20. Jabs, A., Göbel, S., Wenzel, P., Kleschyov, A. L., Hortmann, M., Oelze, M., et al. (2008). Sirolimus-induced vascular dysfunction: increased mitochondrial and nicotinamide adenosine dinucleotide phosphate oxidase-dependent superoxide production and decreased vascular nitric oxide formation. Journal of the American College of Cardiology, 51(22), 2130–2138.

    Article  CAS  PubMed  Google Scholar 

  21. Camici, G. G., Steffel, J., Amanovic, I., Breitenstein, A., Baldinger, J., Keller, S., et al. (2010). Rapamycin promotes arterial thrombosis in vivo: implications for everolimus and zotarolimus eluting stents. European Heart Journal, 31(2), 236–242.

    Article  CAS  PubMed  Google Scholar 

  22. Liu, H. T., Li, F., Wang, W. Y., Li, X. J., Liu, Y. M., Wang, R. A., et al. (2010). Rapamycin inhibits re-endothelialization after percutaneous coronary intervention by impeding the proliferation and migration of endothelial cells and inducing apoptosis of endothelial progenitor cells. Texas Heart Institute Journal, 37(2), 194–201.

    PubMed  PubMed Central  Google Scholar 

  23. Potnis, P. A., Tesfamariam, B., & Wood, S. C. (2011). Induction of nicotinamide-adenine dinucleotide phosphate oxidase and apoptosis by biodegradable polymers in macrophages: implications for stents. Journal of Cardiovascular Pharmacology, 57(6), 712–720.

    Article  CAS  PubMed  Google Scholar 

  24. Nakano, M., Yahagi, K., Otsuka, F., Sakakura, K., Finn, A. V., Kutys, R., et al. (2014). Causes of early stent thrombosis in patients presenting with acute coronary syndrome: an ex vivo human autopsy study. Journal of the American College of Cardiology, 63, 2510–2520.

    Article  PubMed  Google Scholar 

  25. Wang, X., Zachman, A. L., Chun, Y. W., Shen, F. W., Hwang, Y. S., & Sung, H. J. (2014). Polymeric stent materials dysregulate macrophage and endothelial cell functions: implications for coronary artery stent. International Journal of Cardiology, 174(3), 688–695.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nührenberg, T. G., Voisard, R., Fahlisch, F., Rudelius, M., Braun, J., Gschwend, J., et al. (2005). Rapamycin attenuates vascular wall inflammation and progenitor cell promoters after angioplasty. FASEB Journal, 19(2), 246–248.

    PubMed  Google Scholar 

  27. van Beusekom, H. M., Sorop, O., van den Heuvel, M., Onuma, Y., Duncker, D. J., Danser, A. H., et al. (2010). Endothelial function rather than endothelial restoration is altered in paclitaxel- as compared to bare metal-, sirolimus and tacrolimus-eluting stents. EuroIntervention, 6(1), 117–125.

    Article  PubMed  Google Scholar 

  28. Nakazawa, G., Nakano, M., Otsuka, F., Wilcox, J. N., Melder, R., Pruitt, S., et al. (2011). Evaluation of polymer-based comparator drug-eluting stents using a rabbit model of iliac artery atherosclerosis. Circulation. Cardiovascular Interventions, 4(1), 38–46.

    Article  CAS  PubMed  Google Scholar 

  29. Otsuka, F., Byrne, R. A., Yahagi, K., Mori, H., Ladich, E., Fowler, D. R., et al. (2015). Neoatherosclerosis: overview of histopathologic findings and implications for intravascular imaging assessment. European Heart Journal, 36(32), 2147–2159.

    Article  PubMed  Google Scholar 

  30. Joner, M., Nakazawa, G., Finn, A. V., Quee, S. C., Coleman, L., Acampado, E., et al. (2008). Endothelial cell recovery between comparator polymer-based drug-eluting stents. Journal of the American College of Cardiology, 52(5), 333–342.

    Article  CAS  PubMed  Google Scholar 

  31. Jimenez, J. M., & Davies, P. F. (2009). Hemodynamically driven stent strut design. Annals of Biomedical Engineering, 37, 1483–1494.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Torisu, T., Torisu, K., Lee, I. H., Liu, J., Malide, D., Combs, C. A., et al. (2013). Autophagy regulates endothelial cell processing, maturation and secretion of von Willebrand factor. Nature Medicine, 19(10), 1281–1287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shintani, T., & Klionsky, D. J. (2004). Autophagy in health and disease: a double-edged sword. Science, 306, 990–995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hayashi, S., Yamamoto, A., You, F., Yamashita, K., Ikegame, Y., Tawada, M., et al. (2009). The stent-eluting drugs sirolimus and paclitaxel suppress healing of the endothelium by induction of autophagy. American Journal of Pathology, 175(5), 2226–2234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barilli, A., Visigalli, R., Sala, R., Gazzola, G. C., Parolari, A., Tremoli, E., et al. (2008). In human endothelial cells rapamycin causes mTORC2 inhibition and impairs cell viability and function. Cardiovascular Research, 78, 563–571.

    Article  CAS  PubMed  Google Scholar 

  36. Guo, F., Li, X., Peng, J., Tang, Y., Yang, Q., Liu, L., et al. (2014). Autophagy regulates vascular endothelial cell eNOS and ET-1 expression induced by laminar shear stress in an ex vivo perfused system. Annals of Biomedical Engineering, 42(9), 1978–1988.

    Article  PubMed  Google Scholar 

  37. Perry, T. E., Song, M., Despres, D. J., Kim, S. M., San, H., Yu, Z. X., et al. (2009). Bone marrow-derived cells do not repair endothelium in a mouse model of chronic endothelial cell dysfunction. Cardiovascular Research, 84, 317–325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Blann, A. D., Woywodt, A., Bertolini, F., Bull, T. M., Buyon, J. P., Clancy, R. M., et al. (2005). Circulating endothelial cells. Biomarker of vascular disease. Thrombosis and Haemostasis, 93(2), 228–235.

    CAS  PubMed  Google Scholar 

  39. Quilici, J., Banzet, N., Paule, P., Meynard, J. B., Mutin, M., Bonnet, J. L., et al. (2004). Circulating endothelial cell count as a diagnostic marker for non-ST-elevation acute coronary syndromes. Circulation, 110(12), 1586–1591.

    Article  PubMed  Google Scholar 

  40. Richardson, M. R., & Yoder, M. C. (2011). Endothelial progenitor cells: quo vadis? Journal of Molecular and Cellular Cardiology, 50, 266–272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Szmitko, P. E., Fedak, P. W., Weisel, R. D., Stewart, D. J., Kutryk, M. J., & Verma, S. (2003). Endothelial progenitor cells: New hope for a broken heart. Circulation, 107(24), 3093–3100.

    Article  PubMed  Google Scholar 

  42. Bonello, L., Harhouri, K., Baumstarck, K., Arnaud, L., Lesavre, N., Piot, C., et al. (2012). Mobilization of CD34+ KDR+ endothelial progenitor cells predicts target lesion revascularization. Journal of Thrombosis and Haemostasis, 10(9), 1906–1913.

    Article  CAS  PubMed  Google Scholar 

  43. Shantsila, E., Watson, T., & Lip, G. Y. (2007). Endothelial progenitor cells in cardiovascular disorders. Journal of the American College of Cardiology, 49(7), 741–752.

    Article  CAS  PubMed  Google Scholar 

  44. Ben Shoshan, J., & George, J. (2007). Endothelial progenitor cells as therapeutic vectors in cardiovascular disorders: from experimental models to human trials. Pharmacology and Therapeutics, 115(1), 25–36.

    Article  CAS  PubMed  Google Scholar 

  45. Rafii, S., & Lyden, D. (2003). Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nature Medicine, 9(6), 702–712.

    Article  CAS  PubMed  Google Scholar 

  46. Werner, N., Kosiol, S., Schiegl, T., Ahlers, P., Walenta, K., Link, A., et al. (2005). Circulating endothelial progenitor cells and cardiovascular outcomes. New England Journal of Medicine, 353(10), 999–1007.

    Article  CAS  PubMed  Google Scholar 

  47. Hill, J. M., Zalos, G., Halcox, J. P., Schenke, W. H., Waclawiw, M. A., Quyyumi, A. A., et al. (2003). Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. New England Journal of Medicine, 348(7), 593–600.

    Article  PubMed  Google Scholar 

  48. Urbich, C., & Dimmeler, S. (2004). Endothelial progenitor cells: characterization and role in vascular biology. Circulation Research, 95(4), 343–353.

    Article  CAS  PubMed  Google Scholar 

  49. Sata, M., Saiura, A., Kunisato, A., Tojo, A., Okada, S., Tokuhisa, T., et al. (2002). Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nature Medicine, 8(4), 403–409.

    Article  CAS  PubMed  Google Scholar 

  50. Larsen, K., Cheng, C., Tempel, D., Parker, S., Yazdani, S., den Dekker, W. K., et al. (2012). Capture of circulatory endothelial progenitor cells and accelerated re-endothelialization of a bio-engineered stent in human ex vivo shunt and rabbit denudation model. European Heart Journal, 33(1), 120–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Takabatake, S., Hayashi, K., Nakanishi, C., Hao, H., Sakata, K., Kawashiri, M. A., et al. (2014). Vascular endothelial growth factor bound stents: application of in situ capture technology of circulating endothelial progenitor cells in porcine coronary model. Journal of Interventional Cardiology, 27(1), 63–72.

    Article  PubMed  Google Scholar 

  52. Pernagallo, S., Tura, O., Wu, M., Samuel, K., Diaz-Mochon, J. J., Hansen, A., et al. (2012). Novel biopolymers to enhance endothelialization of intra-vascular devices. Adv Healthc Mater, 1(5), 646–656.

    Article  CAS  PubMed  Google Scholar 

  53. Blindt, R., Vogt, F., Astafieva, I., Fach, C., Hristov, M., Krott, N., et al. (2006). A novel drug-eluting stent coated with an integrin-binding cyclic Arg-Gly-Asp peptide inhibits neointimal hyperplasia by recruiting endothelial progenitor cells. Journal of the American College of Cardiology, 47(9), 1786–1795.

    Article  CAS  PubMed  Google Scholar 

  54. Heissig, B., Hattori, K., Dias, S., Friedrich, M., Ferris, B., Hackett, N. R., et al. (2002). Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell, 109(5), 625–637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Paradisi, G., Bracaglia, M., Basile, F., Di'Ipolito, S., Di Nicuolo, F., Ianniello, F., et al. (2012). Effect of pravastatin on endothelial function and endothelial progenitor cells in healthy postmenopausal women. Clinical and Experimental Obstetrics and Gynecology, 39(2), 153–159.

    CAS  PubMed  Google Scholar 

  56. Baran, Ç., Durdu, S., Dalva, K., Zaim, Ç., Dogan, A., Ocakoglu, G., et al. (2012). Effects of preoperative short term use of atorvastatin on endothelial progenitor cells after coronary surgery: a randomized, controlled trial. Stem Cell Reviews, 8(3), 963–971.

    Article  CAS  PubMed  Google Scholar 

  57. Walter, D. H., Zeiher, A. M., & Dimmeler, S. (2004). Effects of statins on endothelium and their contribution to neovascularization by mobilization of endothelial progenitor cells. Coronary Artery Disease, 15(5), 235–242.

    Article  PubMed  Google Scholar 

  58. Sugiura, T., Kondo, T., Kureishi-Bando, Y., Numaguchi, Y., Yoshida, O., Dohi, Y., et al. (2008). Nifedipine improves endothelial function: role of endothelial progenitor cells. Hypertension, 52(3), 491–498.

    Article  CAS  PubMed  Google Scholar 

  59. de Ciuceis, C., Pilu, A., Rizzoni, D., Porteri, E., Muiesan, M. L., Salvetti, M., et al. (2011). Effect of antihypertensive treatment on circulating endothelial progenitor cells in patients with mild essential hypertension. Blood Pressure, 20(2), 77–83.

    Article  PubMed  Google Scholar 

  60. Yao, E. H., Fukuda, N., Matsumoto, T., Katakawa, M., Yamamoto, C., Han, Y., et al. (2008). Effects of the antioxidative blocker celiprolol on endothelial progenitor cells in hypertensive rats. American Journal of Hypertension, 21(9), 1062–1068.

    Article  CAS  PubMed  Google Scholar 

  61. Santulli, G., Wronska, A., Uryu, K., Diacovo, T. G., Gao, M., Marx, S. O., et al. (2014). A selective microRNA-based strategy inhibits restenosis while preserving endothelial function. Journal of Clinical Investigation, 124(9), 4102–4114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Szmitko, P. E., Wang, C. H., Weisel, R. D., de Almeida, J. R., Anderson, T. J., & Verma, S. (2003). New markers of inflammation and endothelial cell activation: part I. Circulation, 108(16), 1917–1923.

    Article  PubMed  Google Scholar 

  63. Kozuka, K., Kohriyama, T., Nomura, E., Ikeda, J., Kajikawa, H., & Nakamura, S. (2002). Endothelial markers and adhesion molecules in acute ischemic stroke-sequential change and differences in stroke subtype. Atherosclerosis, 161, 161–168.

    Article  CAS  PubMed  Google Scholar 

  64. Sabatier, F., Camoin-Jau, L., Anfosso, F., Sampol, J., & Dignat-George, F. (2009). Circulating endothelial cells, microparticles and progenitors: key players towards the definition of vascular competence. Journal of Cellular and Molecular Medicine, 13(3), 454–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kümpers, P., Hellpap, J., David, S., Horn, R., Leitolf, H., Haller, H., et al. (2009). Circulating angiopoietin-2 is a marker and potential mediator of endothelial cell detachment in ANCA-associated vasculitis with renal involvement. Nephrology, Dialysis, Transplantation, 24(6), 1845–1850.

    Article  PubMed  Google Scholar 

  66. Vowinkel, T., Wood, K. C., Stokes, K. Y., Russell, J., Krieglstein, C. F., & Granger, D. N. (2006). Differential expression and regulation of murine CD40 in regional vascular beds. American Journal of Physiology Heart and Circulatory Physiology, 290(2), H631–639.

    Article  CAS  PubMed  Google Scholar 

  67. Burger, D., & Touyz, R. M. (2012). Cellular biomarkers of endothelial health: microparticles, endothelial progenitor cells, and circulating endothelial cells. Journal of the American Society of Hypertension, 6(2), 85–99.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belay Tesfamariam.

Ethics declarations

Disclaimer

This article reflects the views of the author and should not be construed to represent FDA’s views or policies.

Conflict of Interest

The author declares that they have no competing interests.

Additional information

Editor-in-Chief Jennifer L. Hall oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tesfamariam, B. Endothelial Repair and Regeneration Following Intimal Injury. J. of Cardiovasc. Trans. Res. 9, 91–101 (2016). https://doi.org/10.1007/s12265-016-9677-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-016-9677-1

Keywords

Navigation