Skip to main content
Log in

The Mystery 40 Hz: Unraveling the Efficacy of Rhythmic Stimulation in Alzheimer's Disease

  • Insight
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Iaccarino HF, Singer AC, Martorell AJ, Rudenko A, Gao F, Gillingham TZ. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature 2016, 540: 230–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Martorell AJ, Paulson AL, Suk HJ, Abdurrob F, Drummond GT, Guan W, et al. Multi-sensory gamma stimulation ameliorates Alzheimer’s-associated pathology and improves cognition. Cell 2019, 177: 256-271.e22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chan D, Suk HJ, Jackson B, Milman NP, Stark D, Beach SD, et al. Induction of specific brain oscillations may restore neural circuits and be used for the treatment of Alzheimer’s disease. J Intern Med 2021, 290: 993–1009.

    Article  CAS  PubMed  Google Scholar 

  4. Chan D, Suk HJ, Jackson BL, Milman NP, Stark D, Klerman EB, et al. Gamma frequency sensory stimulation in mild probable Alzheimer’s dementia patients: Results of feasibility and pilot studies. PLoS One 2022, 17: e0278412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang YL, Lai TW. Chronic visual stimulation with LED light flickering at 24, 40, or 80 hz failed to reduce amyloid β load in the 5XFAD alzheimer’s disease mouse model. eNeuro 2023, 10: ENEURO.0189–ENEURO.0123.2023.

  6. Soula M, Martín-Ávila A, Zhang Y, Dhingra A, Nitzan N, Sadowski MJ, et al. Forty-hertz light stimulation does not entrain native gamma oscillations in Alzheimer’s disease model mice. Nat Neurosci 2023, 26: 570–578.

    Article  CAS  PubMed  Google Scholar 

  7. Fries P, Nikolić D, Singer W. The gamma cycle. Trends Neurosci 2007, 30: 309–316.

    Article  CAS  PubMed  Google Scholar 

  8. Regan D. Steady-state evoked potentials. J Opt Soc Am 1977, 67: 1475–1489.

    Article  CAS  PubMed  Google Scholar 

  9. Cai Y, Mao Y, Ku Y, Chen J. Holistic integration in the processing of Chinese characters as revealed by electroencephalography frequency tagging. Perception 2020, 49: 658–671.

    Article  PubMed  Google Scholar 

  10. Chen J, Meng X, Liu Z, Shang B, Chang C, Ku Y. Decoding semantics from intermodulation responses in frequency-tagged stereotactic EEG. J Neurosci Methods 2022, 382: 109727.

    Article  PubMed  Google Scholar 

  11. Nie L, Ku Y. Decoding emotion from high-frequency steady state visual evoked potential (SSVEP). J Neurosci Methods 2023, 395: 109919.

    Article  PubMed  Google Scholar 

  12. Notbohm A, Kurths J, Herrmann CS. Modification of brain oscillations via rhythmic light stimulation provides evidence for entrainment but not for superposition of event-related responses. Front Hum Neurosci 2016, 10: 10.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gulbinaite R, Roozendaal DHM, VanRullen R. Attention differentially modulates the amplitude of resonance frequencies in the visual cortex. NeuroImage 2019, 203: 116146.

    Article  PubMed  Google Scholar 

  14. Duecker K, Gutteling TP, Herrmann CS, Jensen O. No evidence for entrainment: Endogenous gamma oscillations and rhythmic flicker responses coexist in visual cortex. J Neurosci 2021, 41: 6684–6698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sugiyama S, Taniguchi T, Kinukawa T, Takeuchi N, Ohi K, Shioiri T, et al. Suppression of low-frequency gamma oscillations by activation of 40-hz oscillation. Cereb Cortex 2022, 32: 2785–2796.

    Article  PubMed  Google Scholar 

  16. Park SS, Park HS, Kim CJ, Kang HS, Kim DH, Baek SS, et al. Physical exercise during exposure to 40-Hz light flicker improves cognitive functions in the 3xTg mouse model of Alzheimer’s disease. Alzheimers Res Ther 2020, 12: 62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Clements-Cortes A, Ahonen H, Evans M, Freedman M, Bartel L. Short-term effects of rhythmic sensory stimulation in alzheimer’s disease: An exploratory pilot study. J Alzheimers Dis 2016, 52: 651–660.

    Article  PubMed  Google Scholar 

  18. Gonzalez-Perez M, Wakui E, Thoma V, Nitsche MA, Rivolta D. Transcranial alternating current stimulation (tACS) at 40 Hz enhances face and object perception. Neuropsychologia 2019, 135: 107237.

    Article  PubMed  Google Scholar 

  19. Manippa V, Palmisano A, Nitsche MA, Filardi M, Vilella D, Logroscino G, et al. Cognitive and neuropathophysiological outcomes of gamma-tACS in dementia: A systematic review. Neuropsychol Rev 2023: 1–24.

  20. Nissim NR, Pham DH, Poddar T, Blutt E, Hamilton RH. The impact of gamma transcranial alternating current stimulation (tACS) on cognitive and memory processes in patients with mild cognitive impairment or Alzheimer’s disease: A literature review. Brain Stimul 2023, 16: 748–755.

    Article  CAS  PubMed  Google Scholar 

  21. Bobola MS, Chen L, Ezeokeke CK, Olmstead TA, Nguyen C, Sahota A, et al. Transcranial focused ultrasound, pulsed at 40 Hz, activates microglia acutely and reduces Aβ load chronically, as demonstrated in vivo. Brain Stimul 2020, 13: 1014–1023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Davila CE, Wang DX, Ritzer M, Moran R, Lega BC. A control-theoretical system for modulating hippocampal gamma oscillations using stimulation of the posterior cingulate cortex. IEEE Trans Neural Syst Rehabil Eng 2022, 30: 2242–2253.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Veniero D, Vossen A, Gross J, Thut G. Lasting EEG/MEG aftereffects of rhythmic transcranial brain stimulation: Level of control over oscillatory network activity. Front Cell Neurosci 2015, 9: 477.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hu Y, Jia Y, Sun Y, Ding Y, Huang Z, Liu C, et al. Efficacy and safety of simultaneous rTMS-tDCS over bilateral angular gyrus on neuropsychiatric symptoms in patients with moderate Alzheimer’s disease: A prospective, randomized, sham-controlled pilot study. Brain Stimul 2022, 15: 1530–1537.

    Article  PubMed  Google Scholar 

  25. Liu C, Han T, Xu Z, Liu J, Zhang M, Du J, et al. Modulating gamma oscillations promotes brain connectivity to improve cognitive impairment. Cereb Cortex 2022, 32: 2644–2656.

    Article  PubMed  Google Scholar 

  26. Menardi A, Rossi S, Koch G, Hampel H, Vergallo A, Nitsche MA, et al. Toward noninvasive brain stimulation 2.0 in Alzheimer’s disease. Ageing Res Rev 2022, 75: 101555.

  27. Adaikkan C, Tsai LH. Gamma entrainment: Impact on neurocircuits, Glia, and therapeutic opportunities. Trends Neurosci 2020, 43: 24–41.

    Article  CAS  PubMed  Google Scholar 

  28. Fisahn A, Pike FG, Buhl EH, Paulsen O. Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 1998, 394: 186–189.

    Article  CAS  PubMed  Google Scholar 

  29. Steriade M, Dossi RC, Paré D, Oakson G. Fast oscillations (20–40 Hz) in thalamocortical systems and their potentiation by mesopontine cholinergic nuclei in the cat. Proc Natl Acad Sci U S A 1991, 88: 4396–4400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Krok AC, Maltese M, Mistry P, Miao X, Li Y, Tritsch NX. Intrinsic dopamine and acetylcholine dynamics in the striatum of mice. Nature 2023, 621: 543–549.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This insight was supported by the National Natural Science Foundation of China (32171082), the National Social Science Foundation of China (17ZDA323), the Neuroeconomics Laboratory of Guangzhou Huashang College (2021WSYS002), the Guangdong Philosophy and Social Science Foundation (GD22YYS16), and the Leading Talent Program (31620016) at Sun Yat-sen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixuan Ku.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ku, Y. The Mystery 40 Hz: Unraveling the Efficacy of Rhythmic Stimulation in Alzheimer's Disease. Neurosci. Bull. (2024). https://doi.org/10.1007/s12264-023-01165-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12264-023-01165-z

Navigation