Skip to main content
Log in

Activity-Dependent Phosphorylation of CDKL5 at Serine 407 Regulates Synaptogenesis and Plasticity

  • Letter to the Editor
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Kilstrup-Nielsen C, Rusconi L, La Montanara P, Ciceri D, Bergo A, Bedogni F. What we know and would like to know about CDKL5 and its involvement in epileptic encephalopathy. Neural Plast 2012, 2012: 728267.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chen Q, Zhu YC, Yu J, Miao S, Zheng J, Xu L, et al. CDKL5, a protein associated with rett syndrome, regulates neuronal morphogenesis via Rac1 signaling. J Neurosci 2010, 30: 12777–12786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhu YC, Li D, Wang L, Lu B, Zheng J, Zhao SL, et al. Palmitoylation-dependent CDKL5-PSD-95 interaction regulates synaptic targeting of CDKL5 and dendritic spine development. Proc Natl Acad Sci USA 2013, 110: 9118–9123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Della Sala G, Putignano E, Chelini G, Melani R, Calcagno E, Michele Ratto G, et al. Dendritic spine instability in a mouse model of CDKL5 disorder is rescued by insulin-like growth factor 1. Biol Psychiatry 2016, 80: 302–311.

    Article  CAS  PubMed  Google Scholar 

  5. Wang HT, Zhu ZA, Li YY, Lou SS, Yang G, Feng X, et al. CDKL5 deficiency in forebrain glutamatergic neurons results in recurrent spontaneous seizures. Epilepsia 2021, 62: 517–528.

    Article  CAS  PubMed  Google Scholar 

  6. Yennawar M, White RS, Jensen FE. AMPA receptor dysregulation and therapeutic interventions in a mouse model of CDKL5 deficiency disorder. J Neurosci 2019, 39: 4814–4828.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tang S, Wang ITJ, Yue C, Takano H, Terzic B, Pance K, et al. Loss of CDKL5 in glutamatergic neurons disrupts hippocampal microcircuitry and leads to memory impairment in mice. J Neurosci 2017, 37: 7420–7437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baltussen LL, Negraes PD, Silvestre M, Claxton S, Moeskops M, Christodoulou E, et al. Chemical genetic identification of CDKL5 substrates reveals its role in neuronal microtubule dynamics. EMBO J 2018, 37: e99763.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mari F, Azimonti S, Bertani I, Bolognese F, Colombo E, Caselli R, et al. CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early-onset seizure variant of Rett syndrome. Hum Mol Genet 2005, 14: 1935–1946.

    Article  CAS  PubMed  Google Scholar 

  10. Oi A, Katayama S, Hatano N, Sugiyama Y, Kameshita I, Sueyoshi N. Subcellular distribution of cyclin-dependent kinase-like 5 (CDKL5) is regulated through phosphorylation by dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A). Biochem Biophys Res Commun 2017, 482: 239–245.

    Article  CAS  PubMed  Google Scholar 

  11. La Montanara P, Rusconi L, Locarno A, Forti L, Barbiero I, Tramarin M, et al. Synaptic synthesis, dephosphorylation, and degradation: A novel paradigm for an activity-dependent neuronal control of CDKL5. J Biol Chem 2015, 290: 4512–4527.

    Article  PubMed  Google Scholar 

  12. Daub H, Olsen JV, Bairlein M, Gnad F, Oppermann FS, Körner R, et al. Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell 2008, 31: 438–448.

    Article  CAS  PubMed  Google Scholar 

  13. Dephoure N, Zhou C, Villén J, Beausoleil SA, Bakalarski CE, Elledge SJ, et al. A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci USA 2008, 105: 10762–10767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee HK, Kameyama K, Huganir RL, Bear MF. NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in Hippocampus. Neuron 1998, 21: 1151–1162.

    Article  CAS  PubMed  Google Scholar 

  15. Fujii S, Tanaka H, Hirano T. Suppression of AMPA receptor exocytosis contributes to hippocampal LTD. J Neurosci 2018, 38: 5523–5537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lu W, Man H, Ju W, Trimble WS, MacDonald JF, Wang YT. Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron 2001, 29: 243–254.

    Article  CAS  PubMed  Google Scholar 

  17. el-D El-Husseini A, Schnell E, Dakoji S, Sweeney N, Zhou Q, Prange O, et al. Synaptic strength regulated by palmitate cycling on PSD-95. Cell 2002, 108: 849–863.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Bin Lu and Dr. Yong-Chuan Zhu for their critical comments on the manuscript. We thank Dr. Qian Hu, Dan Xiang, and Xuxin Chen from the Optical Imaging Core Facility at the Institution of Neuroscience (ION) for assistance with confocal imaging, Ms. Ling Han of the ION Animal Facility for assistance with animal care, and Molecular and Cellular Biology Core Facility. This work was supported by the Ministry of Science and Technology (2018YFA0801404), and the Shanghai Municipal Science and Technology Major Project (2018SHZDZX05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Qi Xiong.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 240 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, M., Xu, Q., Yang, C. et al. Activity-Dependent Phosphorylation of CDKL5 at Serine 407 Regulates Synaptogenesis and Plasticity. Neurosci. Bull. 39, 1454–1458 (2023). https://doi.org/10.1007/s12264-023-01066-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-023-01066-1

Navigation