Skip to main content

Advertisement

Log in

Blockade of the Dopamine D3 Receptor Attenuates Opioids-Induced Addictive Behaviours Associated with Inhibiting the Mesolimbic Dopamine System

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Opioid use disorder (OUD) has become a considerable global public health challenge; however, potential medications for the management of OUD that are effective, safe, and nonaddictive are not available. Accumulating preclinical evidence indicates that antagonists of the dopamine D3 receptor (D3R) have effects on addiction in different animal models. We have previously reported that YQA14, a D3R antagonist, exhibits very high affinity and selectivity for D3Rs over D2Rs, and is able to inhibit cocaine- or methamphetamine-induced reinforcement and reinstatement in self-administration tests. In the present study, our results illustrated that YQA14 dose-dependently reduced infusions under the fixed-ratio 2 procedure and lowered the breakpoint under the progressive-ratio procedure in heroin self-administered rats, also attenuated heroin-induced reinstatement of drug-seeking behavior. On the other hand, YQA14 not only reduced morphine-induced expression of conditioned place preference but also facilitated the extinguishing process in mice. Moreover, we elucidated that YQA14 attenuated opioid-induced reward or reinforcement mainly by inhibiting morphine-induced up-regulation of dopaminergic neuron activity in the ventral tegmental area and decreasing dopamine release in the nucleus accumbens with a fiber photometry recording system. These findings suggest that D3R might play a very important role in opioid addiction, and YQA14 may have pharmacotherapeutic potential in attenuating opioid-induced addictive behaviors dependent on the dopamine system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang XY, Li Q, Dong Y, Yan W, Song K, Lin YQ. Mu-opioid receptors expressed in glutamatergic neurons are essential for morphine withdrawal. Neurosci Bull 2020, 36: 1095–1106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology 2010, 35: 217–238.

    Article  PubMed  Google Scholar 

  3. Chang HY, Kharrazi H, Bodycombe D, Weiner JP, Alexander GC. Healthcare costs and utilization associated with high-risk prescription opioid use: A retrospective cohort study. BMC Med 2018, 16: 69.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vallersnes OM, Jacobsen D, Ekeberg Ø, Brekke M. Mortality, morbidity and follow-up after acute poisoning by substances of abuse: A prospective observational cohort study. Scand J Public Health 2019, 47: 452–461.

    Article  PubMed  Google Scholar 

  5. Li Y, Li CY, Xi W, Jin S, Wu ZH, Jiang P, et al. Rostral and caudal ventral tegmental area GABAergic inputs to different dorsal raphe neurons participate in opioid dependence. Neuron 2019, 101: 748-761.e5.

    Article  CAS  PubMed  Google Scholar 

  6. Valentinova K, Tchenio A, Trusel M, Clerke JA, Lalive AL, Tzanoulinou S, et al. Morphine withdrawal recruits lateral habenula cytokine signaling to reduce synaptic excitation and sociability. Nat Neurosci 2019, 22: 1053–1056.

    Article  CAS  PubMed  Google Scholar 

  7. Rasmussen K, White DA, Acri JB. NIDA’s medication development priorities in response to the Opioid Crisis: Ten most wanted. Neuropsychopharmacology 2019, 44: 657–659.

    Article  PubMed  Google Scholar 

  8. Basile M, Lin R, Kabbani N, Karpa K, Kilimann M, Simpson I, et al. Paralemmin interacts with D3 dopamine receptors: Implications for membrane localization and cAMP signaling. Arch Biochem Biophys 2006, 446: 60–68.

    Article  CAS  PubMed  Google Scholar 

  9. Di Ciano P. Drug seeking under a second-order schedule of reinforcement depends on dopamine D3 receptors in the basolateral amygdala. Behav Neurosci 2008, 122: 129–139.

    Article  PubMed  Google Scholar 

  10. Diaz J, Lévesque D, Lammers CH, Griffon N, Martres MP, Schwartz JC, et al. Phenotypical characterization of neurons expressing the dopamine D3 receptor in the rat brain. Neuroscience 1995, 65: 731–745.

    Article  CAS  PubMed  Google Scholar 

  11. Lévesque D, Diaz J, Pilon C, Martres MP, Giros B, Souil E, et al. Identification, characterization, and localization of the dopamine D3 receptor in rat brain using 7-[3H]hydroxy-N, N-di-n-propyl-2-aminotetralin. Proc Natl Acad Sci U S A 1992, 89: 8155–8159.

    Article  PubMed Central  Google Scholar 

  12. Bouthenet ML, Souil E, Martres MP, Sokoloff P, Giros B, Schwartz JC. Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: Comparison with dopamine D2 receptor mRNA. Brain Res 1991, 564: 203–219.

    Article  CAS  PubMed  Google Scholar 

  13. Sokoloff P, Le Foll B, Perachon S, Bordet R, Ridray S, Schwartz JC. The dopamine D3 receptor and drug addiction. Neurotox Res 2001, 3: 433–441.

    Article  CAS  PubMed  Google Scholar 

  14. Levant B. The D3 dopamine receptor: Neurobiology and potential clinical relevance. Pharmacol Rev 1997, 49: 231–252.

    CAS  PubMed  Google Scholar 

  15. Chen Y, Song R, Yang RF, Wu N, Li J. A novel dopamine D3 receptor antagonist YQA14 inhibits methamphetamine self-administration and relapse to drug-seeking behaviour in rats. Eur J Pharmacol 2014, 743: 126–132.

    Article  CAS  PubMed  Google Scholar 

  16. Song R, Zhang HY, Peng XQ, Su RB, Yang RF, Li J, et al. Dopamine D3 receptor deletion or blockade attenuates cocaine-induced conditioned place preference in mice. Neuropharmacology 2013, 72: 82–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Song R, Yang RF, Wu N, Su RB, Li J, Peng XQ, et al. YQA14: A novel dopamine D3 receptor antagonist that inhibits cocaine self-administration in rats and mice, but not in D3 receptor-knockout mice. Addict Biol 2012, 17: 259–273.

    Article  CAS  PubMed  Google Scholar 

  18. Guerrero-Bautista R, Franco-García A, Hidalgo JM, Fernández-Gómez FJ, Ribeiro Do Couto B, Milanés MV, et al. Distinct regulation of dopamine D3 receptor in the basolateral amygdala and dentate gyrus during the reinstatement of cocaine CPP induced by drug priming and social stress. Int J Mol Sci 2021, 22: 3100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. You ZB, Gao JT, Bi GH, He Y, Boateng C, Cao J, et al. The novel dopamine D3 receptor antagonists/partial agonists CAB2-015 and BAK4-54 inhibit oxycodone-taking and oxycodone-seeking behavior in rats. Neuropharmacology 2017, 126: 190–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. You ZB, Bi GH, Galaj E, Kumar V, Cao J, Gadiano A, et al. Dopamine D3R antagonist VK4-116 attenuates oxycodone self-administration and reinstatement without compromising its antinociceptive effects. Neuropsychopharmacology 2019, 44: 1415–1424.

    Article  CAS  PubMed  Google Scholar 

  21. Boateng CA, Bakare OM, Zhan J, Banala AK, Burzynski C, Pommier E, et al. High affinity dopamine D3 receptor (D3R)-selective antagonists attenuate heroin self-administration in wild-type but not D3R knockout mice. J Med Chem 2015, 58: 6195–6213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lv Y, Hu RR, Jing M, Zhao TY, Wu N, Song R, et al. Selective dopamine D3 receptor antagonist YQA14 inhibits morphine-induced behavioral sensitization in wild type, but not in dopamine D3 receptor knockout mice. Acta Pharmacol Sin 2019, 40: 583–588.

    Article  CAS  PubMed  Google Scholar 

  23. Li T, Hou Y, Cao W, Yan CX, Chen T, Li SB. Role of dopamine D3 receptors in basal nociception regulation and in morphine-induced tolerance and withdrawal. Brain Res 2012, 1433: 80–84.

    Article  CAS  PubMed  Google Scholar 

  24. Liu F, Wang X, Li Z, Li J, Zhuang X, Zhang Z. P-Glycoprotein (ABCB1) limits the brain distribution of YQA-14, a novel dopamine D3 receptor antagonist. Chem Pharm Bull (Tokyo) 2015, 63: 512–518.

    Article  PubMed  Google Scholar 

  25. Sun L, Song R, Chen Y, Yang RF, Wu N, Su RB, et al. A selective D3 receptor antagonist YQA14 attenuates methamphetamine-induced behavioral sensitization and conditioned place preference in mice. Acta Pharmacol Sin 2016, 37: 157–165.

    Article  CAS  PubMed  Google Scholar 

  26. Hu R, Song R, Yang R, Su R, Li J. The dopamine D3 receptor antagonist YQA14 that inhibits the expression and drug-primed reactivation of morphine-induced conditioned place preference in rats. Eur J Pharmacol 2013, 720: 212–217.

    Article  CAS  PubMed  Google Scholar 

  27. Gunaydin LA, Grosenick L, Finkelstein JC, Kauvar IV, Fenno LE, Adhikari A, et al. Natural neural projection dynamics underlying social behavior. Cell 2014, 157: 1535–1551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nunamaker EA, Anderson RJ, Artwohl JE, Lyubimov AV, Fortman JD. Predictive observation-based endpoint criteria for mice receiving total body irradiation. Comp Med 2013, 63: 313–322.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ashby CR Jr, Paul M, Gardner EL, Heidbreder CA, Hagan JJ. Acute administration of the selective D3 receptor antagonist SB-277011A blocks the acquisition and expression of the conditioned place preference response to heroin in male rats. Synapse 2003, 48: 154–156.

    Article  CAS  PubMed  Google Scholar 

  30. Zhan J, Jordan CJ, Bi GH, He XH, Gardner EL, Wang YL, et al. Genetic deletion of the dopamine D3 receptor increases vulnerability to heroin in mice. Neuropharmacology 2018, 141: 11–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rocha A, Valles R, Cardon AL, Bratton GR, Nation JR. Self-administration of heroin in rats: Effects of low-level lead exposure during gestation and lactation. Psychopharmacology 2004, 174: 203–210.

    Article  CAS  PubMed  Google Scholar 

  32. Belin-Rauscent A, Lacoste J, Hermine O, Moussy A, Everitt BJ, Belin D. Decrease of cocaine, but not heroin, self-administration and relapse by the tyrosine kinase inhibitor masitinib in male Sprague Dawley rats. Psychopharmacology (Berl) 2018, 235: 1545–1556.

    Article  CAS  PubMed  Google Scholar 

  33. Nader K, van der Kooy D. Deprivation state switches the neurobiological substrates mediating opiate reward in the ventral tegmental area. J Neurosci 1997, 17: 383–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Steidl S, Wasserman DI, Blaha CD, Yeomans JS. Opioid-induced rewards, locomotion, and dopamine activation: A proposed model for control by mesopontine and rostromedial tegmental neurons. Neurosci Biobehav Rev 2017, 83: 72–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Matsui A, Williams JT. Opioid-sensitive GABA inputs from rostromedial tegmental nucleus synapse onto midbrain dopamine neurons. J Neurosci 2011, 31: 17729–17735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. O’Brien CP, Gardner EL. Critical assessment of how to study addiction and its treatment: Human and non-human animal models. Pharmacol Ther 2005, 108: 18–58.

    Article  PubMed  Google Scholar 

  37. Galaj E, Bi GH, Klein B, Hempel B, Shaik AB, Gogarnoiu ES, et al. A highly D3R-selective and efficacious partial agonist (S)-ABS01-113 compared to its D3R-selective antagonist enantiomer (R)-ABS01-113 as potential treatments for opioid use disorder. Neuropsychopharmacology 2022, 47: 2309–2318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Belin-Rauscent A, Fouyssac M, Bonci A, Belin D. How preclinical models evolved to resemble the diagnostic criteria of drug addiction. Biol Psychiatry 2016, 79: 39–46.

    Article  PubMed  Google Scholar 

  39. Roberts DCS, Morgan D, Liu Y. How to make a rat addicted to cocaine. Prog Neuro Psychopharmacol Biol Psychiatry 2007, 31: 1614–1624.

    Article  CAS  Google Scholar 

  40. Deroche-Gamonet V, Belin D, Piazza PV. Evidence for addiction-like behavior in the rat. Science 2004, 305: 1014–1017.

    Article  CAS  PubMed  Google Scholar 

  41. Stewart J. Pathways to relapse: The neurobiology of drug- and stress-induced relapse to drug-taking. J Psychiatry Neurosci 2000, 25: 125–136.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Shalev U, Highfield D, Yap J, Shaham Y. Stress and relapse to drug seeking in rats: Studies on the generality of the effect. Psychopharmacology 2000, 150: 337–346.

    Article  CAS  PubMed  Google Scholar 

  43. Shaham Y, Stewart J. Exposure to mild stress enhances the reinforcing efficacy of intravenous heroin self-administration in rats. Psychopharmacology (Berl) 1994, 114: 523–527.

    Article  CAS  PubMed  Google Scholar 

  44. Wager TT, Chappie T, Horton D, Chandrasekaran RY, Samas B, Dunn-Sims ER, et al. Dopamine D3/D2 receptor antagonist PF-4363467 attenuates opioid drug-seeking behavior without concomitant D2 side effects. ACS Chem Neurosci 2017, 8: 165–177.

    Article  CAS  PubMed  Google Scholar 

  45. Diana M. The dopamine hypothesis of drug addiction and its potential therapeutic value. Front Psychiatry 2011, 2: 64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Volkow ND, Morales M. The brain on drugs: From reward to addiction. Cell 2015, 162: 712–725.

    Article  CAS  PubMed  Google Scholar 

  47. Kauer JA, Malenka RC. Synaptic plasticity and addiction. Nat Rev Neurosci 2007, 8: 844–858.

    Article  CAS  PubMed  Google Scholar 

  48. Juarez B, Han MH. Diversity of dopaminergic neural circuits in response to drug exposure. Neuropsychopharmacology 2016, 41: 2424–2446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Matsui A, Jarvie BC, Robinson BG, Hentges ST, Williams JT. Separate GABA afferents to dopamine neurons mediate acute action of opioids, development of tolerance, and expression of withdrawal. Neuron 2014, 82: 1346–1356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Margolis EB, Hjelmstad GO, Fujita W, Fields HL. Direct bidirectional μ-opioid control of midbrain dopamine neurons. J Neurosci 2014, 34: 14707–14716.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Johnson SW, North RA. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 1992, 12: 483–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Galaj E, Han X, Shen H, Jordan CJ, He Y, Humburg B, et al. Dissecting the role of GABA neurons in the VTA versus SNr in opioid reward. J Neurosci 2020, 40: 8853–8869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Corre J, van Zessen R, Loureiro M, Patriarchi T, Tian L, Pascoli V, et al. Dopamine neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement. eLife 2018, 7: e39945.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Fields HL, Margolis EB. Understanding opioid reward. Trends Neurosci 2015, 38: 217–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sulzer D. How addictive drugs disrupt presynaptic dopamine neurotransmission. Neuron 2011, 69: 628–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Galaj E, Xi ZX. Progress in opioid reward research: From a canonical two-neuron hypothesis to two neural circuits. Pharmacol Biochem Behav 2021, 200: 173072.

    Article  CAS  PubMed  Google Scholar 

  57. Georges F, Stinus L, Bloch B, Le Moine C. Chronic morphine exposure and spontaneous withdrawal are associated with modifications of dopamine receptor and neuropeptide gene expression in the rat striatum. Eur J Neurosci 1999, 11: 481–490.

    Article  CAS  PubMed  Google Scholar 

  58. Diaz J, Lévesque D, Griffon N, Lammers CH, Martres MP, Sokoloff P, et al. Opposing roles for dopamine D2 and D3 receptors on neurotensin mRNA expression in nucleus accumbens. Eur J Neurosci 1994, 6: 1384–1387.

    Article  CAS  PubMed  Google Scholar 

  59. Henny P, Brown MTC, Northrop A, Faunes M, Ungless MA, Magill PJ, et al. Structural correlates of heterogeneous in vivo activity of midbrain dopaminergic neurons. Nat Neurosci 2012, 15: 613–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang H, de Jong JW, Tak Y, Peck J, Bateup HS, Lammel S. Nucleus accumbens subnuclei regulate motivated behavior via direct inhibition and disinhibition of VTA dopamine subpopulations. Neuron 2018, 97: 434-449.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xi ZX, Gardner EL. Pharmacological actions of NGB 2904, a selective dopamine D3 receptor antagonist, in animal models of drug addiction. CNS Drug Rev 2007, 13: 240–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Rifang Yang (Beijing Institute of Pharmacology and Toxicology) for providing YQA14. This work was supported by the National Natural Science Foundation of China (81573405 and U1502225), the Natural Science Foundation of Beijing (7212159), the National Key R&D Program of China (2016YFC0800907 and 2017YFC131040), the Medical Innovation Program (16CXZ033), and the Beijing Nova Program (xx2014A014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Li or Rui Song.

Ethics declarations

Conflict of interest

The authors claim that there are no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, RR., Yang, MD., Ding, XY. et al. Blockade of the Dopamine D3 Receptor Attenuates Opioids-Induced Addictive Behaviours Associated with Inhibiting the Mesolimbic Dopamine System. Neurosci. Bull. 39, 1655–1668 (2023). https://doi.org/10.1007/s12264-023-01059-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-023-01059-0

Keywords

Navigation