Skip to main content

Advertisement

Log in

Lipocalin 2 in the Paraventricular Thalamic Nucleus Contributes to DSS-Induced Depressive-Like Behaviors

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

The incidence rate of anxiety and depression is significantly higher in patients with inflammatory bowel diseases (IBD) than in the general population. The mechanisms underlying dextran sulfate sodium (DSS)-induced depressive-like behaviors are still unclear. We clarified that IBD mice induced by repeated administration of DSS presented depressive-like behaviors. The paraventricular thalamic nucleus (PVT) was regarded as the activated brain region by the number of c-fos-labeled neurons. RNA-sequencing analysis showed that lipocalin 2 (Lcn2) was upregulated in the PVT of mice with DSS-induced depressive behaviors. Upregulating Lcn2 from neuronal activity induced dendritic spine loss and the secreted protein induced chemokine expression and subsequently contributed to microglial activation leading to blood-brain barrier permeability. Moreover, Lcn2 silencing in the PVT alleviated the DSS-induced depressive-like behaviors. The present study demonstrated that elevated Lcn2 in the PVT is a critical factor for DSS-induced depressive behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barberio B, Zamani M, Black CJ, Savarino EV, Ford AC. Prevalence of symptoms of anxiety and depression in patients with inflammatory bowel disease: A systematic review and meta-analysis. Lancet Gastroenterol Hepatol 2021, 6: 359–370.

    Article  PubMed  Google Scholar 

  2. Jordi SBU, Lang BM, Auschra B, von Känel R, Biedermann L, Greuter T. Depressive symptoms predict clinical recurrence of inflammatory bowel disease. Inflamm Bowel Dis 2022, 28: 560–571.

    Article  PubMed  Google Scholar 

  3. Moulton CD, Pavlidis P, Norton C, Norton S, Pariante C, Hayee B, et al. Depressive symptoms in inflammatory bowel disease: An extraintestinal manifestation of inflammation? Clin Exp Immunol 2019, 197: 308–318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen LM, Bao CH, Wu Y, Liang SH, Wang D, Wu LY, et al. Tryptophan-kynurenine metabolism: A link between the gut and brain for depression in inflammatory bowel disease. J Neuroinflammation 2021, 18: 135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sandes S, Figueiredo N, Pedroso S, Sant’Anna F, Acurcio L, Abatemarco Junior M, et al. Weissella paramesenteroides WpK4 plays an immunobiotic role in gut-brain axis, reducing gut permeability, anxiety-like and depressive-like behaviors in murine models of colitis and chronic stress. Food Res Int 2020, 137: 109741.

    Article  CAS  PubMed  Google Scholar 

  6. Natah SS, Mouihate A, Pittman QJ, Sharkey KA. Disruption of the blood-brain barrier during TNBS colitis. Neurogastroenterol Motil 2005, 17: 433–446.

    Article  CAS  PubMed  Google Scholar 

  7. Do J, Woo J. From gut to brain: Alteration in inflammation markers in the brain of dextran sodium sulfate-induced colitis model mice. Clin Psychopharmacol Neurosci 2018, 16: 422–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McGinty JF, Otis JM. Heterogeneity in the paraventricular thalamus: The traffic light of motivated behaviors. Front Behav Neurosci 2020, 14: 590528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barson JR, Mack NR, Gao WJ. The paraventricular nucleus of the thalamus is an important node in the emotional processing network. Front Behav Neurosci 2020, 14: 598469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jha MK, Lee S, Park DH, Kook H, Park KG, Lee IK, et al. Diverse functional roles of lipocalin-2 in the central nervous system. Neurosci Biobehav Rev 2015, 49: 135–156.

    Article  CAS  PubMed  Google Scholar 

  11. Olson B, Zhu X, Norgard MA, Diba P, Levasseur PR, Buenafe AC, et al. Chronic cerebral lipocalin 2 exposure elicits hippocampal neuronal dysfunction and cognitive impairment. Brain Behav Immun 2021, 97: 102–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang Y, Cui Y, Sang K, Dong Y, Ni Z, Ma S, et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature 2018, 554: 317–322.

    Article  CAS  PubMed  Google Scholar 

  13. Peng Z, Li X, Li J, Dong Y, Gao Y, Liao Y, et al. Dlg1 knockout inhibits microglial activation and alleviates lipopolysaccharide-induced depression-like behavior in mice. Neurosci Bull 2021, 37: 1671–1682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry 2016, 21: 786–796.

    Article  CAS  PubMed  Google Scholar 

  15. Chen Y, Zhang P, Lin X, Zhang H, Miao J, Zhou Y, et al. Mitophagy impairment is involved in sevoflurane-induced cognitive dysfunction in aged rats. Aging (Albany NY) 2020, 12: 17235–17256.

    Article  CAS  PubMed  Google Scholar 

  16. Xia M, Li Z, Li S, Liang S, Li X, Chen B, et al. Sleep deprivation selectively down-regulates astrocytic 5-HT2B receptors and triggers depressive-like behaviors via stimulating P2X7 receptors in mice. Neurosci Bull 2020, 36: 1259–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen YR, Zhang SX, Fang M, Zhang P, Zhou YF, Yu X, et al. Egr2 contributes to age-dependent vulnerability to sevoflurane-induced cognitive deficits in mice. Acta Pharmacol Sin 2022, 43: 2828–2840.

    Article  CAS  PubMed  Google Scholar 

  18. Bisgaard TH, Allin KH, Keefer L, Ananthakrishnan AN, Jess T. Depression and anxiety in inflammatory bowel disease: Epidemiology, mechanisms and treatment. Nat Rev Gastroenterol Hepatol 2022, 19: 717–726.

    Article  PubMed  Google Scholar 

  19. Price RB, Duman R. Neuroplasticity in cognitive and psychological mechanisms of depression: An integrative model. Mol Psychiatry 2020, 25: 530–543.

    Article  PubMed  Google Scholar 

  20. Hsu DT, Kirouac GJ, Zubieta JK, Bhatnagar S. Contributions of the paraventricular thalamic nucleus in the regulation of stress, motivation, and mood. Front Behav Neurosci 2014, 8: 73.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Das R, Emon MPZ, Shahriar M, Nahar Z, Islam SMA, Bhuiyan MA, et al. Higher levels of serum IL-1β and TNF-α are associated with an increased probability of major depressive disorder. Psychiatry Res 2021, 295: 113568.

    Article  CAS  PubMed  Google Scholar 

  22. Lee S, Kim JH, Kim JH, Seo JW, Han HS, Lee WH, et al. Lipocalin-2 Is a chemokine inducer in the central nervous system: Role of chemokine ligand 10 (CXCL10) in lipocalin-2-induced cell migration. J Biol Chem 2011, 286: 43855–43870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jeon S, Jha MK, Ock J, Seo J, Jin M, Cho H, et al. Role of lipocalin-2-chemokine axis in the development of neuropathic pain following peripheral nerve injury. J Biol Chem 2013, 288: 24116–24127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Monif M, Reid CA, Powell KL, Drummond KJ, O’Brien TJ, Williams DA. Interleukin-1β has trophic effects in microglia and its release is mediated by P2X7R pore. J Neuroinflammation 2016, 13: 173.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang L, Tan J, Jiang X, Qian W, Yang T, Sun X, et al. Neuron-derived CCL2 contributes to microglia activation and neurological decline in hepatic encephalopathy. Biol Res 2017, 50: 26.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Watson PM, Anderson JM, Vanltallie CM, Doctrow SR. The tight-junction-specific protein ZO-1 is a component of the human and rat blood-brain barriers. Neurosci Lett 1991, 129: 6–10.

    Article  CAS  PubMed  Google Scholar 

  27. Jin M, Kim JH, Jang E, Lee YM, Han HS, Woo DK, et al. Lipocalin-2 deficiency attenuates neuroinflammation and brain injury after transient middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 2014, 34: 1306–1314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mondal A, Bose D, Saha P, Sarkar S, Seth R, Kimono D, et al. Lipocalin 2 induces neuroinflammation and blood-brain barrier dysfunction through liver-brain axis in murine model of nonalcoholic steatohepatitis. J Neuroinflammation 2020, 17: 201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gastfriend BD, Nishihara H, Canfield SG, Foreman KL, Engelhardt B, Palecek SP, et al. Wnt signaling mediates acquisition of blood-brain barrier properties in naïve endothelium derived from human pluripotent stem cells. Elife 2021, 10: e70992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rozich JJ, Holmer A, Singh S. Effect of lifestyle factors on outcomes in patients with inflammatory bowel diseases. Am J Gastroenterol 2020, 115: 832–840.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Neuendorf R, Harding A, Stello N, Hanes D, Wahbeh H. Depression and anxiety in patients with Inflammatory Bowel Disease: A systematic review. J Psychosom Res 2016, 87: 70–80.

    Article  PubMed  Google Scholar 

  32. Bauer C, Duewell P, Mayer C, Lehr HA, Fitzgerald KA, Dauer M, et al. Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut 2010, 59: 1192–1199.

    Article  CAS  PubMed  Google Scholar 

  33. Zhou G, Yu L, Fang L, Yang W, Yu T, Miao Y, et al. CD177+ neutrophils as functionally activated neutrophils negatively regulate IBD. Gut 2018, 67: 1052–1063.

    Article  CAS  PubMed  Google Scholar 

  34. Ancona A, Petito C, Iavarone I, Petito V, Galasso L, Leonetti A, et al. The gut-brain axis in irritable bowel syndrome and inflammatory bowel disease. Dig Liver Dis 2021, 53: 298–305.

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, Zhang H, Yang J, Zhan M, Hu X, Liu Y, et al. P2Y12 receptor as a new target for electroacupuncture relieving comorbidity of visceral pain and depression of inflammatory bowel disease. Chin Med 2021, 16: 139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nakagawasai O, Yamada K, Takahashi K, Odaira T, Sakuma W, Ishizawa D, et al. Liver hydrolysate prevents depressive-like behavior in an animal model of colitis: Involvement of hippocampal neurogenesis via the AMPK/BDNF pathway. Behav Brain Res 2020, 390: 112640.

    Article  CAS  PubMed  Google Scholar 

  37. Zhu L, Wu L, Yu B, Liu X. The participation of a neurocircuit from the paraventricular thalamus to amygdala in the depressive like behavior. Neurosci Lett 2011, 488: 81–86.

    Article  CAS  PubMed  Google Scholar 

  38. Zhao D, Liu C, Cui M, Liu J, Meng F, Lian H, et al. The paraventricular thalamus input to central amygdala controls depression-related behaviors. Exp Neurol 2021, 342: 113744.

    Article  CAS  PubMed  Google Scholar 

  39. Ferreira AC, Pinto V, Mesquita SD, Novais A, Sousa JC, Correia-Neves M, et al. Lipocalin-2 is involved in emotional behaviors and cognitive function. Front Cell Neurosci 2013, 7: 122.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Vichaya EG, Gross PS, Estrada DJ, Cole SW, Grossberg AJ, Evans SE, et al. Lipocalin-2 is dispensable in inflammation-induced sickness and depression-like behavior. Psychopharmacology 2019, 236: 2975–2982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu Q, Feng R, Chen Y, Luo G, Yan H, Chen L, et al. Dcf1 triggers dendritic spine formation and facilitates memory acquisition. Mol Neurobiol 2018, 55: 763–775.

    Article  CAS  PubMed  Google Scholar 

  42. Zheng L, Liu Q, Wen T. Dendritic cell factor 1 deletion leads to developmental defects in mushroom-shaped dendritic spines. Neuroreport 2019, 30: 1008–1015.

    Article  CAS  PubMed  Google Scholar 

  43. Borkham-Kamphorst E, Drews F, Weiskirchen R. Induction of lipocalin-2 expression in acute and chronic experimental liver injury moderated by pro-inflammatory cytokines interleukin-1β through nuclear factor-κB activation. Liver Int 2011, 31: 656–665.

    Article  CAS  PubMed  Google Scholar 

  44. Wei L, Du Y, Xie Y, Yu X, Chen H, Qiu Y. Lipocalin-2 regulates hippocampal microglial activation in poststroke depression. Front Aging Neurosci 2021, 13: 798335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bakke I, Walaas GA, Bruland T, Røyset ES, van Beelen Granlund A, Escudero-Hernández C, et al. Mucosal and faecal neutrophil gelatinase-associated lipocalin as potential biomarkers for collagenous colitis. J Gastroenterol 2021, 56: 914–927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stallhofer J, Friedrich M, Konrad-Zerna A, Wetzke M, Lohse P, Glas J, et al. Lipocalin-2 is a disease activity marker in inflammatory bowel disease regulated by IL-17A, IL-22, and TNF-α and modulated by IL23R genotype status. Inflamm Bowel Dis 2015, 21: 2327–2340.

    PubMed  Google Scholar 

  47. Haruwaka K, Ikegami A, Tachibana Y, Ohno N, Konishi H, Hashimoto A, et al. Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat Commun 2019, 10: 5816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Harry GJ. Microglia during development and aging. Pharmacol Ther 2013, 139: 313–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vojdani A, Vojdani E, Herbert M, Kharrazian D. Correlation between antibodies to bacterial lipopolysaccharides and barrier proteins in sera positive for ASCA and ANCA. Int J Mol Sci 2020, 21: 1381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Toyota Y, Wei J, Xi G, Keep RF, Hua Y. White matter T2 hyperintensities and blood-brain barrier disruption in the hyperacute stage of subarachnoid hemorrhage in male mice: The role of lipocalin-2. CNS Neurosci Ther 2019, 25: 1207–1214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Oberoi R, Bogalle EP, Matthes LA, Schuett H, Koch AK, Grote K, et al. Lipocalin (LCN) 2 mediates pro-atherosclerotic processes and is elevated in patients with coronary artery disease. PLoS One 2015, 10: e0137924.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Guo P, Yang J, Jia D, Moses MA, Auguste DT. ICAM-1-targeted, Lcn2 siRNA-encapsulating liposomes are potent anti-angiogenic agents for triple negative breast cancer. Theranostics 2016, 6: 1–13.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Talley S, Valiauga R, Anderson L, Cannon AR, Choudhry MA, Campbell EM. DSS-induced inflammation in the colon drives a proinflammatory signature in the brain that is ameliorated by prophylactic treatment with the S100A9 inhibitor paquinimod. J Neuroinflammation 2021, 18: 263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful for the technical support of the Core Facilities, Zhejiang University School of Medicine. This work was supported by the National Natural Science Foundation of China (82001424 and 82171176), and the Key Program of the Natural Science Foundation of Zhejiang, China (LZ19H090003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Chen.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1047 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zheng, D., Wang, H. et al. Lipocalin 2 in the Paraventricular Thalamic Nucleus Contributes to DSS-Induced Depressive-Like Behaviors. Neurosci. Bull. 39, 1263–1277 (2023). https://doi.org/10.1007/s12264-023-01047-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-023-01047-4

Keywords

Navigation