Skip to main content

Advertisement

Log in

Glia Connect Inflammation and Neurodegeneration in Multiple Sclerosis

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is regarded as a chronic inflammatory disease that leads to demyelination and eventually to neurodegeneration. Activation of innate immune cells and other inflammatory cells in the brain and spinal cord of people with MS has been well described. However, with the innovation of technology in glial cell research, we have a deep understanding of the mechanisms of glial cells connecting inflammation and neurodegeneration in MS. In this review, we focus on the role of glial cells, including microglia, astrocytes, and oligodendrocytes, in the pathogenesis of MS. We mainly focus on the connection between glial cells and immune cells in the process of axonal damage and demyelinating neuron loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Compston A, Coles A. Multiple sclerosis. Lancet 2008, 372: 1502–1517.

    Article  CAS  PubMed  Google Scholar 

  2. Matthews PM. Chronic inflammation in multiple sclerosis - seeing what was always there. Nat Rev Neurol 2019, 15: 582–593.

    Article  CAS  PubMed  Google Scholar 

  3. Van Hove H, Martens L, Scheyltjens I, De Vlaminck K, Pombo Antunes AR, De Prijck S. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat Neurosci 2019, 22: 1021–1035.

    Article  PubMed  Google Scholar 

  4. Goldmann T, Wieghofer P, Jordão MJC, Prutek F, Hagemeyer N, Frenzel K, et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat Immunol 2016, 17: 797–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: An overview: Structure, regulation, and clinical implications. Neurobiol Dis 2004, 16: 1–13.

    Article  CAS  PubMed  Google Scholar 

  6. Tietz S, Engelhardt B. Brain barriers: Crosstalk between complex tight junctions and adherens junctions. J Cell Biol 2015, 209: 493–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kirk J, Plumb J, Mirakhur M, McQuaid S. Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood-brain barrier leakage and active demyelination. J Pathol 2003, 201: 319–327.

    Article  PubMed  Google Scholar 

  8. Lee NJ, Ha SK, Sati P, Absinta M, Luciano NJ, Lefeuvre JA, et al. Spatiotemporal distribution of fibrinogen in marmoset and human inflammatory demyelination. Brain 2018, 141: 1637–1649.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Olcum M, Tastan B, Kiser C, Genc S, Genc K. Microglial NLRP3 inflammasome activation in multiple sclerosis. Adv Protein Chem Struct Biol 2020, 119: 247–308.

    Article  CAS  PubMed  Google Scholar 

  10. Gharagozloo M, Gris KV, Mahvelati T, Amrani A, Lukens JR, Gris D. NLR-dependent regulation of inflammation in multiple sclerosis. Front Immunol 2012, 2017: 8.

    Google Scholar 

  11. Palanichamy A, Apeltsin L, Kuo TC, Sirota M, Wang S, Pitts SJ, et al. Immunoglobulin class-switched B cells form an active immune axis between CNS and periphery in multiple sclerosis. Sci Transl Med 2014, 6: 248ra106.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Stern JNH, Yaari G, Vander Heiden JA, Church G, Donahue WF, Hintzen RQ, et al. B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Sci Transl Med 2014, 6: 248ra107.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurol 2018, 17: 1016–1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Simon MJ, Iliff JJ. Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease. Biochim Biophys Acta BBA Mol Basis Dis 2016, 1862: 442–451.

    Article  CAS  Google Scholar 

  15. Machado-Santos J, Saji E, Tröscher AR, Paunovic M, Liblau R, Gabriely G, et al. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain 2018, 141: 2066–2082.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Michel L, Touil H, Pikor NB, Gommerman JL, Prat A, Bar-Or A. B cells in the multiple sclerosis central nervous system: Trafficking and contribution to CNS-compartmentalized inflammation. Front Immunol 2015, 6: 636.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Villar LM, Sádaba MC, Roldán E, Masjuan J, González-Porqué P, Villarrubia N, et al. Intrathecal synthesis of oligoclonal IgM against myelin lipids predicts an aggressive disease course in MS. J Clin Invest 2005, 115: 187–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hemmer B, Kerschensteiner M, Korn T. Role of the innate and adaptive immune responses in the course of multiple sclerosis. Lancet Neurol 2015, 14: 406–419.

    Article  CAS  PubMed  Google Scholar 

  19. Li R, Patterson KR, Bar-Or A. Reassessing B cell contributions in multiple sclerosis. Nat Immunol 2018, 19: 696–707.

    Article  CAS  PubMed  Google Scholar 

  20. Lassmann H. Multiple sclerosis pathology. Cold Spring Harb Perspect Med 2018, 8: a028936.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Scalfari A, Neuhaus A, Daumer M, Muraro PA, Ebers GC. Onset of secondary progressive phase and long-term evolution of multiple sclerosis. J Neurol Neurosurg Psychiatry 2014, 85: 67–75.

    Article  PubMed  Google Scholar 

  22. Confavreux C, Vukusic S, Moreau T, Adeleine P. Relapses and progression of disability in multiple sclerosis. N Engl J Med 2000, 343: 1430–1438.

    Article  CAS  PubMed  Google Scholar 

  23. Mahad DH, Trapp BD, Lassmann H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol 2015, 14: 183–193.

    Article  CAS  PubMed  Google Scholar 

  24. Lassmann H, van Horssen J, Mahad D. Progressive multiple sclerosis: Pathology and pathogenesis. Nat Rev Neurol 2012, 8: 647–656.

    Article  CAS  PubMed  Google Scholar 

  25. Sati P, Oh J, Evangelou N, Guttmann CRG, Henry RG, et al. The central vein sign and its clinical evaluation for the diagnosis of multiple sclerosis: A consensus statement from the North American Imaging in Multiple Sclerosis Cooperative. Nat Rev Neurol 2016, 12: 714–722.

    Article  PubMed  Google Scholar 

  26. Kuhlmann T, Ludwin S, Prat A, Antel J, Brück W, Lassmann H. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol 2017, 133: 13–24.

    Article  CAS  PubMed  Google Scholar 

  27. Weiner HL. A shift from adaptive to innate immunity: A potential mechanism of disease progression in multiple sclerosis. J Neurol 2008, 255: 3–11.

    Article  CAS  PubMed  Google Scholar 

  28. Frühbeis C, Fröhlich D, Kuo WP, Amphornrat J, Thilemann S, Saab AS, et al. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol 2013, 11: e1001604.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Smith KJ, Blakemore WF, McDonald WI. Central remyelination restores secure conduction. Nature 1979, 280: 395–396.

    Article  CAS  PubMed  Google Scholar 

  30. Nave KA. Myelination and the trophic support of long axons. Nat Rev Neurosci 2010, 11: 275–283.

    Article  CAS  PubMed  Google Scholar 

  31. Franklin RJM, Ffrench-Constant C. Regenerating CNS myelin - from mechanisms to experimental medicines. Nat Rev Neurosci 2017, 18: 753–769.

    Article  CAS  PubMed  Google Scholar 

  32. Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H, Schmidbauer M, et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 2009, 132: 1175–1189.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bierhansl L, Hartung HP, Aktas O, Ruck T, Roden M, Meuth SG. Thinking outside the box: Non-canonical targets in multiple sclerosis. Nat Rev Drug Discov 2022, 21: 578–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dutta R, McDonough J, Yin X, Peterson J, Chang A, Torres T, et al. Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol 2006, 59: 478–489.

    Article  CAS  PubMed  Google Scholar 

  35. Wicken C, Nguyen J, Karna R, Bhargava P. Leptomeningeal inflammation in multiple sclerosis: Insights from animal and human studies. Mult Scler Relat Disord 2018, 26: 173–182.

    Article  PubMed  Google Scholar 

  36. Magliozzi R, Columba-Cabezas S, Serafini B, Aloisi F. Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis. J Neuroimmunol 2004, 148: 11–23.

    Article  CAS  PubMed  Google Scholar 

  37. Festa ED, Hankiewicz K, Kim S, Skurnick J, Wolansky LJ, Cook SD, et al. Serum levels of CXCL13 are elevated in active multiple sclerosis. Mult Scler 2009, 15: 1271–1279.

    Article  CAS  PubMed  Google Scholar 

  38. Magliozzi R, Howell O, Vora A, Serafini B, Nicholas R, Puopolo M, et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 2007, 130: 1089–1104.

    Article  PubMed  Google Scholar 

  39. Wegner C, Esiri MM, Chance SA, Palace J, Matthews PM. Neocortical neuronal, synaptic, and glial loss in multiple sclerosis. Neurology 2006, 67: 960–967.

    Article  CAS  PubMed  Google Scholar 

  40. Frischer JM, Weigand SD, Guo Y, Kale N, Parisi JE, Pirko I, et al. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann Neurol 2015, 78: 710–721.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kutzelnigg A, Lucchinetti CF, Stadelmann C, Brück W, Rauschka H, Bergmann M, et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 2005, 128: 2705–2712.

    Article  PubMed  Google Scholar 

  42. Metz I, Weigand SD, Popescu BFG, Frischer JM, Parisi JE, Guo Y, et al. Pathologic heterogeneity persists in early active multiple sclerosis lesions. Ann Neurol 2014, 75: 728–738.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Luchetti S, Fransen NL, van Eden CG, Ramaglia V, Mason M, Huitinga I. Progressive multiple sclerosis patients show substantial lesion activity that correlates with clinical disease severity and sex: A retrospective autopsy cohort analysis. Acta Neuropathol 2018, 135: 511–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Heß K, Starost L, Kieran NW, Thomas C, Vincenten MCJ, Antel J, et al. Lesion stage-dependent causes for impaired remyelination in MS. Acta Neuropathol 2020, 140: 359–375.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Reynolds R, Roncaroli F, Nicholas R, Radotra B, Gveric D, Howell O. The neuropathological basis of clinical progression in multiple sclerosis. Acta Neuropathol 2011, 122: 155–170.

    Article  PubMed  Google Scholar 

  46. Zrzavy T, Hametner S, Wimmer I, Butovsky O, Weiner HL, Lassmann H. Loss of ‘homeostatic’ microglia and patterns of their activation in active multiple sclerosis. Brain 2017, 140: 1900–1913.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hametner S, Wimmer I, Haider L, Pfeifenbring S, Brück W, Lassmann H. Iron and neurodegeneration in the multiple sclerosis brain. Ann Neurol 2013, 74: 848–861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hammond TR, Marsh SE, Stevens B. Immune signaling in neurodegeneration. Immunity 2019, 50: 955–974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Friese MA, Schattling B, Fugger L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat Rev Neurol 2014, 10: 225–238.

    Article  CAS  PubMed  Google Scholar 

  50. Mishra MK, Rawji KS, Keough MB, Kappen J, Dowlatabadi R, Vogel HJ, et al. Harnessing the benefits of neuroinflammation: Generation of macrophages/microglia with prominent remyelinating properties. J Neurosci 2021, 41: 3366–3385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 2013, 16: 1211–1218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cignarella F, Filipello F, Bollman B, Cantoni C, Locca A, Mikesell R, et al. TREM2 activation on microglia promotes myelin debris clearance and remyelination in a model of multiple sclerosis. Acta Neuropathol 2020, 140: 513–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Laflamme N, Cisbani G, Préfontaine P, Srour Y, Bernier J, St-Pierre MK, et al. mCSF-induced microglial activation prevents myelin loss and promotes its repair in a mouse model of multiple sclerosis. Front Cell Neurosci 2018, 12: 178.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cantuti-Castelvetri L, Fitzner D, Bosch-Queralt M, Weil MT, Su M, Sen P, et al. Defective cholesterol clearance limits remyelination in the aged central nervous system. Science 2018, 359: 684–688.

    Article  CAS  PubMed  Google Scholar 

  55. Dillenburg A, Ireland G, Holloway RK, Davies CL, Evans FL, Swire M, et al. Activin receptors regulate the oligodendrocyte lineage in health and disease. Acta Neuropathol 2018, 135: 887–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hlavica M, Delparente A, Good A, Good N, Plattner PS, Seyedsadr MS, et al. Intrathecal insulin-like growth factor 1 but not insulin enhances myelin repair in young and aged rats. Neurosci Lett 2017, 648: 41–46.

    Article  CAS  PubMed  Google Scholar 

  57. Pasquini LA, Millet V, Hoyos HC, Giannoni JP, Croci DO, Marder M, et al. Galectin-3 drives oligodendrocyte differentiation to control myelin integrity and function. Cell Death Differ 2011, 18: 1746–1756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Arnett HA, Mason J, Marino M, Suzuki K, Matsushima GK, Ting JP. TNF alpha promotes proliferation of oligodendrocyte progenitors and remyelination. Nat Neurosci 2001, 4: 1116–1122.

    Article  CAS  PubMed  Google Scholar 

  59. Mason JL, Suzuki K, Chaplin DD, Matsushima GK. Interleukin-1beta promotes repair of the CNS. J Neurosci 2001, 21: 7046–7052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lloyd AF, Miron VE. The pro-remyelination properties of microglia in the central nervous system. Nat Rev Neurol 2019, 15: 447–458.

    Article  PubMed  Google Scholar 

  61. Absinta M, Sati P, Reich DS. Advanced MRI and staging of multiple sclerosis lesions. Nat Rev Neurol 2016, 12: 358–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tham M, Frischer JM, Weigand SD, Fitz-Gibbon PD, Webb SM, Guo Y, et al. Iron heterogeneity in early active multiple sclerosis lesions. Ann Neurol 2021, 89: 498–510.

    Article  CAS  PubMed  Google Scholar 

  63. Williams R, Buchheit CL, Berman NEJ, LeVine SM. Pathogenic implications of iron accumulation in multiple sclerosis. J Neurochem 2012, 120: 7–25.

    Article  CAS  PubMed  Google Scholar 

  64. Dal-Bianco A, Grabner G, Kronnerwetter C, Weber M, Höftberger R, Berger T, et al. Slow expansion of multiple sclerosis iron rim lesions: Pathology and 7 T magnetic resonance imaging. Acta Neuropathol 2017, 133: 25–42.

    Article  CAS  PubMed  Google Scholar 

  65. Dal-Bianco A, Grabner G, Kronnerwetter C, Weber M, Kornek B, Kasprian G, et al. Long-term evolution of multiple sclerosis iron rim lesions in 7 T MRI. Brain 2021, 144: 833–847.

    Article  PubMed  Google Scholar 

  66. Filippi M, Brück W, Chard D, Fazekas F, Geurts JJG, Enzinger C, et al. Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol 2019, 18: 198–210.

    Article  PubMed  Google Scholar 

  67. van der Poel M, Ulas T, Mizee MR, Hsiao CC, Miedema SSM, Adelia, et al. Transcriptional profiling of human microglia reveals grey-white matter heterogeneity and multiple sclerosis-associated changes. Nat Commun 2019, 10: 1139.

  68. Nair S, Sobotka KS, Joshi P, Gressens P, Fleiss B, Thornton C, et al. Lipopolysaccharide-induced alteration of mitochondrial morphology induces a metabolic shift in microglia modulating the inflammatory response in vitro and in vivo. Glia 2019, 67: 1047–1061.

    Article  PubMed  Google Scholar 

  69. Borst K, Dumas AA, Prinz M. Microglia: Immune and non-immune functions. Immunity 2021, 54: 2194–2208.

    Article  CAS  PubMed  Google Scholar 

  70. Dong Y, Dong Y. When encephalitogenic T cells collaborate with microglia in multiple sclerosis. Nat Rev Neurol 2019, 15: 704–717.

    Article  PubMed  Google Scholar 

  71. Prinz M, Jung S, Priller J. Microglia biology: One century of evolving concepts. Cell 2019, 179: 292–311.

    Article  CAS  PubMed  Google Scholar 

  72. Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol 2018, 18: 225–242.

    Article  CAS  PubMed  Google Scholar 

  73. Madore C, Yin Z, Leibowitz J, Butovsky O. Microglia, lifestyle stress, and neurodegeneration. Immunity 2020, 52: 222–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mendiola AS, Ryu JK, Bardehle S, Meyer-Franke A, Ang KKH, Wilson C, et al. Transcriptional profiling and therapeutic targeting of oxidative stress in neuroinflammation. Nat Immunol 2020, 21: 513–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ajami B, Samusik N, Wieghofer P, Ho PP, Crotti A, Bjornson Z, et al. Single-cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models. Nat Neurosci 2018, 21: 541–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. van Olst L, Rodriguez-Mogeda C, Picon C, Kiljan S, James RE, Kamermans A, et al. Meningeal inflammation in multiple sclerosis induces phenotypic changes in cortical microglia that differentially associate with neurodegeneration. Acta Neuropathol 2021, 141: 881–899.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Prineas JW, Kwon EE, Cho ES, Sharer LR, Barnett MH, Oleszak EL, et al. Immunopathology of secondary-progressive multiple sclerosis. Ann Neurol 2001, 50: 646–657.

    Article  CAS  PubMed  Google Scholar 

  78. Singh S, Metz I, Amor S, van der Valk P, Stadelmann C, Brück W. Microglial nodules in early multiple sclerosis white matter are associated with degenerating axons. Acta Neuropathol 2013, 125: 595–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Greenhalgh AD, David S, Bennett FC. Immune cell regulation of glia during CNS injury and disease. Nat Rev Neurosci 2020, 21: 139–152.

    Article  CAS  PubMed  Google Scholar 

  80. Toft-Hansen H, Füchtbauer L, Owens T. Inhibition of reactive astrocytosis in established experimental autoimmune encephalomyelitis favors infiltration by myeloid cells over T cells and enhances severity of disease. Glia 2011, 59: 166–176.

    Article  PubMed  Google Scholar 

  81. Mayo L, Trauger SA, Blain M, Nadeau M, Patel B, Alvarez JI, et al. Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nat Med 2014, 20: 1147–1156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lee HG, Wheeler MA, Quintana FJ. Function and therapeutic value of astrocytes in neurological diseases. Nat Rev Drug Discov 2022, 21: 339–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rawji KS, Gonzalez Martinez GA, Sharma A, Franklin RJM. The role of astrocytes in remyelination. Trends Neurosci 2020, 43: 596–607.

    Article  CAS  PubMed  Google Scholar 

  84. Mayo L, Cunha AP, Madi A, Beynon V, Yang Z, Alvarez JI, et al. IL-10-dependent Tr1 cells attenuate astrocyte activation and ameliorate chronic central nervous system inflammation. Brain 2016, 139: 1939–1957.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Sanmarco LM, Wheeler MA, Gutiérrez-Vázquez C, Polonio CM, Linnerbauer M, Pinho-Ribeiro FA, et al. Gut-licensed IFNγ+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes. Nature 2021, 590: 473–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ponath G, Ramanan S, Mubarak M, Housley W, Lee S, Sahinkaya FR, et al. Myelin phagocytosis by astrocytes after myelin damage promotes lesion pathology. Brain 2017, 140: 399–413.

    Article  PubMed  Google Scholar 

  87. Popescu BF, Frischer JM, Webb SM, Tham M, Adiele RC, Robinson CA, et al. Pathogenic implications of distinct patterns of iron and zinc in chronic MS lesions. Acta Neuropathol 2017, 134: 45–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Elliott C, Wolinsky JS, Hauser SL, Kappos L, Barkhof F, Bernasconi C, et al. Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis lesions. Mult Scler 2019, 25: 1915–1925.

    Article  PubMed  Google Scholar 

  89. Volterra A, Liaudet N, Savtchouk I. Astrocyte Ca2+ signalling: An unexpected complexity. Nat Rev Neurosci 2014, 15: 327–335.

    Article  CAS  PubMed  Google Scholar 

  90. Mandolesi G, Gentile A, Musella A, Fresegna D, De Vito F, Bullitta S, et al. Synaptopathy connects inflammation and neurodegeneration in multiple sclerosis. Nat Rev Neurol 2015, 11: 711–724.

    Article  CAS  PubMed  Google Scholar 

  91. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017, 541: 481–487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rothhammer V, Borucki DM, Tjon EC, Takenaka MC, Chao CC, Ardura-Fabregat A, et al. Microglial control of astrocytes in response to microbial metabolites. Nature 2018, 557: 724–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gao ZZ, Li YC, Shao CY, Xiao J, Shen Y, Zhou L. EPAC negatively regulates myelination via controlling proliferation of oligodendrocyte precursor cells. Neurosci Bull 2020, 36: 639–648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tiane A, Schepers M, Rombaut B, Hupperts R, Prickaerts J, Hellings N, et al. From OPC to oligodendrocyte: An epigenetic journey. Cells 2019, 8: 1236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen W, Yi M, Yang F. Transcriptional control of the development of myelinated mechano-nociceptors. Neurosci Bull 2020, 36: 683–684.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Boulanger JJ, Messier C. From precursors to myelinating oligodendrocytes: Contribution of intrinsic and extrinsic factors to white matter plasticity in the adult brain. Neuroscience 2014, 269: 343–366.

    Article  CAS  PubMed  Google Scholar 

  97. Attfield KE, Jensen LT, Kaufmann M, Friese MA, Fugger L. The immunology of multiple sclerosis. Nat Rev Immunol 2022, 22: 734–750.

    Article  CAS  PubMed  Google Scholar 

  98. Kuhlmann T, Miron V, Cui Q, Wegner C, Antel J, Brück W. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 2008, 131: 1749–1758.

    Article  CAS  PubMed  Google Scholar 

  99. Prozorovski T, Schneider R, Berndt C, Hartung HP, Aktas O. Redox-regulated fate of neural stem progenitor cells. Biochim Biophys Acta BBA Gen Subj 2015, 1850: 1543–1554.

    Article  CAS  Google Scholar 

  100. Kotter MR, Zhao C, van Rooijen N, Franklin RJM. Macrophage-depletion induced impairment of experimental CNS remyelination is associated with a reduced oligodendrocyte progenitor cell response and altered growth factor expression. Neurobiol Dis 2005, 18: 166–175.

    Article  CAS  PubMed  Google Scholar 

  101. Kirby L, Jin J, Cardona JG, Smith MD, Martin KA, Wang J, et al. Oligodendrocyte precursor cells present antigen and are cytotoxic targets in inflammatory demyelination. Nat Commun 2019, 10: 3887.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Babbe H, Roers A, Waisman A, Lassmann H, Goebels N, Hohlfeld R, et al. Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med 2000, 192: 393–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Falcão AM, van Bruggen D, Marques S, Meijer M, Jäkel S, Agirre E, et al. Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat Med 2018, 24: 1837–1844.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Niu J, Tsai HH, Hoi KK, Huang N, Yu G, Kim K, et al. Aberrant oligodendroglial-vascular interactions disrupt the blood-brain barrier, triggering CNS inflammation. Nat Neurosci 2019, 22: 709–718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Battefeld A, Klooster J, Kole MHP. Myelinating satellite oligodendrocytes are integrated in a glial syncytium constraining neuronal high-frequency activity. Nat Commun 2016, 7: 11298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Schafflick D, Xu CA, Hartlehnert M, Cole M, Schulte-Mecklenbeck A, Lautwein T, et al. Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis. Nat Commun 2020, 11: 247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lisak RP, Nedelkoska L, Benjamins JA, Schalk D, Bealmear B, Touil H, et al. B cells from patients with multiple sclerosis induce cell death via apoptosis in neurons in vitro. J Neuroimmunol 2017, 309: 88–99.

    Article  CAS  PubMed  Google Scholar 

  108. Engelhardt B, Vajkoczy P, Weller RO. The movers and shapers in immune privilege of the CNS. Nat Immunol 2017, 18: 123–131.

    Article  CAS  PubMed  Google Scholar 

  109. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity 2014, 41: 14–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wolf Y, Shemer A, Levy-Efrati L, Gross M, Kim JS, Engel A, et al. Microglial MHC class II is dispensable for experimental autoimmune encephalomyelitis and cuprizone-induced demyelination. Eur J Immunol 2018, 48: 1308–1318.

    Article  CAS  PubMed  Google Scholar 

  111. Sanmarco LM, Polonio CM, Wheeler MA, Quintana FJ. Functional immune cell-astrocyte interactions. J Exp Med 2021, 218: e20202715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lee HM, Kang J, Lee SJ, Jo EK. Microglial activation of the NLRP3 inflammasome by the priming signals derived from macrophages infected with mycobacteria. Glia 2013, 61: 441–452.

    Article  PubMed  Google Scholar 

  113. Colonna M, Butovsky O. Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol 2017, 35: 441–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Andjelkovic AV, Kerkovich D, Pachter JS. Monocyte: Astrocyte interactions regulate MCP-1 expression in both cell types. J Leukoc Biol 2000, 68: 545–552.

    Article  CAS  PubMed  Google Scholar 

  115. Davies CL, Patir A, McColl BW. Myeloid cell and transcriptome signatures associated with inflammation resolution in a model of self-limiting acute brain inflammation. Front Immunol 2019, 10: 1048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Schwab JM, Nan C, Arita M, Serhan CN. Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 2007, 447: 869–874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hooshmand MJ, Nguyen HX, Piltti KM, Benavente F, Hong S, Flanagan L, et al. Neutrophils induce astroglial differentiation and migration of human neural stem cells via C1q and C3a synthesis. J Immunol 2017, 199: 1069–1085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ng LG, Ostuni R, Hidalgo A. Heterogeneity of neutrophils. Nat Rev Immunol 2019, 19: 255–265.

    Article  CAS  PubMed  Google Scholar 

  119. Malik A, Kanneganti TD. Inflammasome activation and assembly at a glance. J Cell Sci 2017, 130: 3955–3963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Noroozi S, Meimand HAE, Arababadi MK, Nakhaee N, Asadikaram G. The effects of IFN-β 1a on the expression of inflammasomes and apoptosis-associated speck-like proteins in multiple sclerosis patients. Mol Neurobiol 2017, 54: 3031–3037.

    Article  CAS  PubMed  Google Scholar 

  121. Verderio C, Muzio L, Turola E, Bergami A, Novellino L, Ruffini F, et al. Myeloid microvesicles are a marker and therapeutic target for neuroinflammation. Ann Neurol 2012, 72: 610–624.

    Article  CAS  PubMed  Google Scholar 

  122. Kettenmann H, Kirchhoff F, Verkhratsky A. Microglia: New roles for the synaptic stripper. Neuron 2013, 77: 10–18.

    Article  CAS  PubMed  Google Scholar 

  123. Centonze D, Muzio L, Rossi S, Cavasinni F, De Chiara V, Bergami A, et al. Inflammation triggers synaptic alteration and degeneration in experimental autoimmune encephalomyelitis. J Neurosci 2009, 29: 3442–3452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mandolesi G, Musella A, Gentile A, Grasselli G, Haji N, Sepman H, et al. Interleukin-1β alters glutamate transmission at Purkinje cell synapses in a mouse model of multiple sclerosis. J Neurosci 2013, 33: 12105–12121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bauer S, Kerr BJ, Patterson PH. The neuropoietic cytokine family in development, plasticity, disease and injury. Nat Rev Neurosci 2007, 8: 221–232.

    Article  CAS  PubMed  Google Scholar 

  126. Steinman L. Inflammatory cytokines at the summits of pathological signal cascades in brain diseases. Sci Signal 2013, 6: pe3.

  127. Mori F, Nisticò R, Mandolesi G, Piccinin S, Mango D, Kusayanagi H, et al. Interleukin-1β promotes long-term potentiation in patients with multiple sclerosis. Neuromolecular Med 2014, 16: 38–51.

    Article  CAS  PubMed  Google Scholar 

  128. Rossi S, Furlan R, De Chiara V, Motta C, Studer V, Mori F, et al. Interleukin-1β causes synaptic hyperexcitability in multiple sclerosis. Ann Neurol 2012, 71: 76–83.

    Article  CAS  PubMed  Google Scholar 

  129. Sarchielli P, Greco L, Floridi A, Floridi A, Gallai V. Excitatory amino acids and multiple sclerosis: Evidence from cerebrospinal fluid. Arch Neurol 2003, 60: 1082–1088.

    Article  PubMed  Google Scholar 

  130. Ganor Y, Levite M. The neurotransmitter glutamate and human T cells: Glutamate receptors and glutamate-induced direct and potent effects on normal human T cells, cancerous human leukemia and lymphoma T cells, and autoimmune human T cells. J Neural Transm 2014, 121: 983–1006.

    Article  CAS  PubMed  Google Scholar 

  131. Werner P, Pitt D, Raine CS. Multiple sclerosis: Altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage. Ann Neurol 2001, 50: 169–180.

    Article  CAS  PubMed  Google Scholar 

  132. Pitt D, Werner P, Raine CS. Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med 2000, 6: 67–70.

    Article  CAS  PubMed  Google Scholar 

  133. Azevedo CJ, Kornak J, Chu P, Sampat M, Okuda DT, Cree BA, et al. In vivo evidence of glutamate toxicity in multiple sclerosis. Ann Neurol 2014, 76: 269–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bolton C, Paul C. Glutamate receptors in neuroinflammatory demyelinating disease. Mediators Inflamm 2006, 2006: 93684.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Centonze D, Muzio L, Rossi S, Furlan R, Bernardi G, Martino G. The link between inflammation, synaptic transmission and neurodegeneration in multiple sclerosis. Cell Death Differ 2010, 17: 1083–1091.

    Article  CAS  PubMed  Google Scholar 

  136. Rossi S, Motta C, Studer V, Barbieri F, Buttari F, Bergami A, et al. Tumor necrosis factor is elevated in progressive multiple sclerosis and causes excitotoxic neurodegeneration. Mult Scler 2014, 20: 304–312.

    Article  PubMed  Google Scholar 

  137. Geurts JG, Wolswijk G, Bö L, van der Valk P, Polman CH, Troost D, et al. Altered expression patterns of group I and II metabotropic glutamate receptors in multiple sclerosis. Brain 2003, 126: 1755–1766.

    Article  CAS  PubMed  Google Scholar 

  138. Zhai D, Lee FHF, D’Souza C, Su P, Zhang S, Jia Z, et al. Blocking GluR2-GAPDH ameliorates experimental autoimmune encephalomyelitis. Ann Clin Transl Neurol 2015, 2: 388–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Jin S, Takeuchi H, Yawata I, Harada Y, Sonobe Y, Doi Y, et al. Blockade of glutamate release from microglia attenuates experimental autoimmune encephalomyelitis in mice. Tohoku J Exp Med 2009, 217: 87–92.

    Article  Google Scholar 

  140. Kan QC, Zhang S, Xu YM, Zhang GX, Zhu L. Matrine regulates glutamate-related excitotoxic factors in experimental autoimmune encephalomyelitis. Neurosci Lett 2014, 560: 92–97.

    Article  CAS  PubMed  Google Scholar 

  141. Paul AM, Branton WG, Walsh JG, Polyak MJ, Lu JQ, Baker GB, et al. GABA transport and neuroinflammation are coupled in multiple sclerosis: Regulation of the GABA transporter-2 by ganaxolone. Neuroscience 2014, 273: 24–38.

    Article  CAS  PubMed  Google Scholar 

  142. Han MH, Hwang SI, Roy DB, Lundgren DH, Price JV, Ousman SS, et al. Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 2008, 451: 1076–1081.

    Article  CAS  PubMed  Google Scholar 

  143. Bhat R, Axtell R, Mitra A, Miranda M, Lock C, Tsien RW, et al. Inhibitory role for GABA in autoimmune inflammation. Proc Natl Acad Sci U S A 2010, 107: 2580–2585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Jin Z, Mendu SK, Birnir B. GABA is an effective immunomodulatory molecule. Amino Acids 2013, 45: 87–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangtai Guan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Yu, H. & Guan, Y. Glia Connect Inflammation and Neurodegeneration in Multiple Sclerosis. Neurosci. Bull. 39, 466–478 (2023). https://doi.org/10.1007/s12264-023-01034-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-023-01034-9

Keywords

Navigation